150009 (732545), страница 5
Текст из файла (страница 5)
ш1.0
7(
72 0y' 41 0(x)=y 42 0(x),
7* 0 (2.3.4)
72 0y' 42 0(x)=p(1-y 52 41 0(x))y 42 0(x)-y 41 0(x).
79
ш2.0
Оценку погрешности решений системы ОДУ, получаемых методом
Рунге-Кутты четвертого порядка, можно провести можно провести по
формуле:
ш1.0
y 4h 0(x)-y 4kh 0(x)
R 40 0=───────────── 5─ 0 , (2.3.5)
k 5p 0-1
- 39 -
которая при кратности изменения шага k=2 принимает вид:
R 40 0=[y 4h 0(x)-y 42h 0(x)]/15 (2.3.6)
ш2.0
Однако эта формула требует значительных затрат времени для пов-
торного расчета.
Рассмотрим тексты программ реализованных на Паскале.
PROGRAM RUNGE-KYTTE_4
TYPE VEC=ARRAY [1..8] OF REAL;
VAR P,X,X9,H:REAL;
Y:VEC;
CH:CHAR;
{-----ПРОИЗВОДНЫЕ-----}
PROCEDURE RP(X:REAL;VAR Y,R:VEC);
BEGIN
F[1]:=Y[2];
F[2]:=P*(1.0-SQR(Y[1]))*Y[2]-Y[1];
END;
{-----МЕТОД РУНГЕ-КУТТЫ 4-го ПОРЯДКА-----}
PROCEDURE RK4(N:INTEGER; X,H:REAL; VAR Y:VEC);
VAR I,J:INTEGER;
H1,H2,Q:REAL;
Y0,Y1,F:VEC;
BEGIN
H1:=0.0;
H2:=H/2;
- 40 -
FOR I:=1 TO N DO
BEGIN
Y0[I]:=Y[I];
Y1[I]:=Y[I];
END;
FOR J:=1 TO 4 DO
BEGIN
RP(X+H1,Y,F);
IF J=3 THEN H1:=H ELSE H1:=H2;
FOR I:= TO N DO
BEGIN
Q:=H1*F[I];
Y[I]:=Y0[I]+Q;
IF J=2 THEN Q:=2+Q;
Y1[I]:=Y1[I]+Q/3.0;
END;
END;
FOR I:=1 TO N DO Y[I]:=Y1[I];
END;
{--------------------}
BEGIN
REPET
WRITE('P,X,X9,H,Y[1],Y[2]?');
READLN(P,X,X9,H,Y[1],Y[2]);
WHILE (X0.0) DO
BEGIN
RP4(2,X,H,Y);
X:+X+H;
- 41 -
WRITELN(X,' ',Y[1],' ',Y[2]);
END;
WRITE('Еще разок ?(Y/N)');
READLN(CH);
UNTIL (CH='Y')OR(CH='y');
END.
ш2.0
- 42 -
1 2.4 0 1Краткие сведения о функциях 0 1Бесселя.
Цилиндрические функции (бесселевы функции) - решения Z 7т 0 диф-
ференциального уравнения Бесселя:
ш1.0
d 52 0Z dZ
z 52 0 ───── + z ──── + (z 52 0- 7n 52 0)Z=0 (2.4.1)
dz 52 0 dz
ш2.0
где 7 n 0 - произвольное действительное или комплексное число.
Если 7 n 0 не является целым числом, то общее решение уравнения
(2.4.1) имеет вид:
Z 7т 0= 7 0c 41 0J 7т 0(z) 7 0+ 7 0c 42 0J 4- 7т 0(z), (2.4.2)
где с 41 0,с 42 0 - постоянные, а J 7т 0 и J 4- 7т 0 - так называемые цилиндричес-
кие функции 1-го рода, или функции Бесселя. Для них справедливо
разложение:
ш1.0
7$ 4 m 7 т 4+2m
7░▒ 0 (-1) 5 0(0,5z)
J(z)= 7 ▓ 0 ───────────────── , (│arg z│ < 7p 0) (2.4.3)
7│┤ 0 7█ 0Г(m+1)Г(m+ 7n 0+1)
5m=0
7т
Ряд в правой части для z J 7т 0(z) сходится абсолютно и равномерно
ш2.0
при всех │z│ 7, 0R, │ 7n 0│ 7, 0N, где R и N - произвольные положительные
числа. Функции J 7т 0(z) и J 4- 7т 0(z) - аналитические , с особыми точками
z=0 и z= 7$ 0; производные функций J 7т 0(z) и J 4- 7т 0(z) удовлетворяют сле-
дующему тождеству:
ш1.0
2sin 7np
z[J 7т 0(z)J' 4- 7т 0(z)-J' 7т 0(z)J 4- 7т 0(z)] = - ────────. (2.4.4)
7p
ш2.0
- 43 -
Если же 7 n 0 - целое, то J 7т 0(z) и J 4- 7т 0(z) линейно зависимы, и их
линейная комбинация уже не является общим решением уравнения
(2.4.1). Поэтому, наряду с цилиндрическими функциями 1-го рода,
вводят цилиндрические функции 2-го рода N 7n 0(z) (или Неймана функ-
ции, функции Вебера):
ш1.0
1
N 7т 0(z)=───────[J 7т 0(z)cos 7np 0-J 4- 7т 0(z)], (2.4.5)
sin 7np
ш2.0
(другое обозначение Y 7т 0(z)). При помощи этих функций общее решение
уравнения (2.4.1) может быть записано в виде:
Z 7т 0=c 41 0J 7т 0(z)+c 42 0N 7т 0(z).
Важны для приложения и другие решения уравнения (2.4.1) - ци-
линдрические функции 3-го рода (или Ганкеля функции). Их обозна-
чают через H 7т 5(1) 0(z) и H 7т 5(2) 0(z) и, по определению, полагают:
ш1.0
1 4 -i 7тз
H 7т 5(1) 0(z)=J 7т 0(z)+iH 7т 0(z)=──────── [J 4- 7т 0(z)-J 7т 0(z)e ], (2.4.6)
isin 7np
1 4 -i 7тз
H 7т 5(2) 0(z)=J 7т 0(z)-iH 7т 0(z)=──────── [J 7т 0(z)e -J 4- 7т 0(z)]. (2.4.7)
isin 7np
ш1.0
Справедливы тождества:
7)
2 7 2
z[J 7т 0(z)N' 7т 0(z)-J' 7т 0(z)N 7т 0(z)] = ───. 7 2
7p 2
78 0 (2.4.8)
4i 7 2
z[H 7т 5(1) 0(z)H 7т 5(2) 0'(z)-H 7т 5(1) 0'(z)H 7т 5(2) 0(z)]= - ──── 7 2
7p 2
70
- 44 -
ш1.0
и соотношения:
1
J(z) = ─ [H 7т 5(1) 0(z)+H 7т 5(2) 0(z)], (2.4.9)
2
1
H 7т 0(z)= ──── [H 7т 5(1) 0(z)-H 7т 5(2) 0(z)]. (2.4.10)
2i
ш2.0
Для действительных z=x и 7 n 0 функции Ганкеля являются комплекс-
но сопряженными решениями уравнения (2.4.1). При этом функции
J 7т 0(z) дают действительную часть, а функции N 7т 0(x) - мнимую часть
функций Ганкеля.
Цилиндрические функции 1-го, 2-го и 3-го рода удовлетворяют
рекуррентным формулам:
ш1.0
7)
2 7n 2
Z 7т 4-1 0(z)+Z 7т 4+1 0(z)=──── Z 7т 0(z), 7 2
z 7 8 0 (2.4.11)
72
Z 7т 4-1 0(z)-Z 7т 4+1 0(z)=2Z' 7т 0(z). 7 2
70
ш2.0
Каждая пара функций
J 7т 0(z),J 4- 7т 0(z); J 7т 0(z),Y 7т 0(z); H 7т 5(1) 0(z),H 7т 5(2) 0(z)
образует (при целом 7n 0) фундаментальную систему решений уравнения
(2.4.1).
Модифицированными цилиндрическими функциями называются ци-
линдрические функции мнимого аргумента:
- 45 -
ш1.0
7( 0 4-i 7тз 4/2 7 0 4i 7з 4/2
72 0 e 7 0J 7т 0(e z), 7 0- 7p 0 < argz 7, 0 7p 0/2 ,
72
I 7т 0(z) = 7* 0 (2.4.12)
72 0 4-3i 7тз 4/2 7 0 4-3i 7з 4/2
72 0 e 7 4 7 0J 7т 0(e 4 0 z), 7 p 0/2 < argz 7, 0 7p 0,
79
и функции Макдональда:
4i 7зт 4/2 7 4 7 4i 7з 4/2 0 4 -i 7зт 4/2 7 4 7 4-i 7з 4/2
K 7т 0(z)=(1/2)i 7p 0e 7 0H 5(1) 7т 0(e 4 0z)=-(1/2)i 7p 0e 7 4 7 0H 5(2) 7т 0(e 4 0z)=
4-i 7зт 4/2 7 4 7 4i 7з 4/2
=(1/2)i 7p 0e 7 4 7 0H 5(1) 7т 0(e 4 0z). (2.4.13)
Эти функции являются решениями дифференциального уравнения
d 52 0Z dZ
z 52 0 ───── + z ──── - (z 52 0+ 7n 52 0)Z=0 (2.4.14)
dz 52 0 dZ
и удовлетворяют рекуррентным формулам[8,9]
7)
2 7n 0 72
I 7т 4-1 0(z)+I 7т 4+1 0(z)= ──── I 7т 0(z), 7 2
z 7 0 78 0 (2.4.14)
2 7n 0 72
K 7т 4-1 0(z)-K 7т 4+1 0(z)=-──── K 7т 0(z). 72
z 7 0 70
K 4- 7т 0(z)=K 7т 0(z). (2.4.15)
ш2.0
- 46 -
1 2.5 Краткие сведения о функциях Кельвина.
Функции Кельвина (или функции Томпсона) ber(z) и bei(z) -
определяются следующими соотношениями:
ш1.0
43i 7з 4/4
ber 7т 0(z)+bei 7т 0(z)=J 7т 0(ze ) (2.4.16)
4-3i 7з 4/4
ber 7т 0(z)-bei 7т 0(z)=J 7т 0(ze 7 0 ) (2.4.17)
ш2.0 7
где J 7т 0 - вышеописанная функция Бесселя. При 7 n 0=0 индекс у знака
функции опускается. Функции Кельвина составляют фундаментальную
систему решений уравнения:
z 52 0y''+zy'-(iz 52 0+ 7n 52 0)y=0, (2,4,18)
переходящего при z=x(i 51/2 0) в уравнение Бесселя.
Функции Кельвина представляются в виде:
ш1.0
7$
7░▒ 4 5 0(-1) 5r 0z 54r 7▌█
ber(z)= 7 ▓ 4 0───────────── 5 , 0 (2.4.19)
7╞│┤ 4 02 54r 0[(2r)!] 52
4r=0
7$
7░▒ 4 5 0(-1) 5r 0z 54r+2 7▌█
bei(z)= 7 ▓ 4 0──────────────── . (2.4.20)
7╞│┤ 4 02 54r+2 0[(2r+1)!] 52
4r=0
Асимптотические представления[8,9]:
- 47 -
ш1.0
7ф 4(z)
e
ber(z)=─────── 4── 0─ cos 7b 0(z), (2.4.21)
(2 7p 0z) 51/2
7ф 4(z)
e
bei(z)=─────── 4── 0─ sin 7b 0(z), (2.4.22)
(2 7p 0z) 51/2
где
z 1 5 0 25 13
7a 0(z) 7` 0 ────── 5 0+ ──────── 5 0- ─────────── 5 0- ───── - ... (2.4.23)
(2) 51/2 0 8z(2) 51/2 0 384z 52 0(2) 51/2 0 128z 52
z 7p 0 1 5 01 5 0 25
7b 0(z) 7` 0 ────── 5 0- ─ + ──────── 5 0- ──── - ─────────── 5 0- ... (2.4.24)
(2) 51/2 0 8 8z(2) 51/2 0 16z 52 0 384z 52 0(2) 51/2
ш2.0
Графики функций Кельвина представлены на рисунках 4,5.
ш2.0
- 48 -
_ 2Глава 3
_ 1Использование ЭВМ в учебном процессе.
1 3.1 Роль ЭВМ в обучении физики.
В ходе поступательного развития методики преподавания физики
совершенствуются методы обучения и технология педагогического
труда, улучшается и обогащается техническая оснащенность учебного
процесса. От примитивного рисунка на песке до использования ЭВМ,
позволяющих показать в динамике практически любой физический про-
цесс и проверить знания учащихся - вот путь эволюции технических
средств обучения. Дальнейший прогресс в преподавании физики, на
мой взгляд, будет тесно связан с широким использованием в учебном
процессе мощных современных ПЭВМ и компьютерных сетей локального
и глобального масштаба. Это, в скором будущем, позволит исключить
использование такой громоздкой техники как кино, эпи-, диа- и
графопроекция, обучающие и контролирующие устройства. Не надо ду-
мать однако, что ЭВМ вытеснит "живой" эксперимент, позволяющий
ученику соприкоснуться с явлением один на один. Речь идет о моде-
лировании тех опытов, постановка которых очень громоздка или не-
возможна вообще. Эти "мыслящие" машины должны стать в руках учи-
теля орудием более эффективной передачи знаний подрастающим поко-
лениям и усиления воспитательного влияния на них.(рис. 9,10,11)
Однако неправильно считать ЭВМ всесильными. Их применение
всегда должно определятся спецификой изучаемой темы и возмож-
ностью выразительно передать с их помощью главные особенности
- 49 -
изучаемого материала. Так, нельзя изучать физику только сидя за
терминалом ЭВМ. Основой обучения физики должно быть непосредс-
твенное (специально организованное педагогом) восприятие ученика-
ми изучаемых явлений. Учитель физики должен знать дидактические
возможности применения ЭВМ и в совершенстве владеть приемами их
использования.
Широкое применение ЭВМ дает возможность на всех этапах обуче-
ния:
1) повысить эффективность преподавания путем налаживания сис-
тематического (пооперационного) контроля знаний учащихся, индиви-
дуализировать усвоение знаний в условиях классно-урочной системы,
т.е. реализовать разноуровневость в обучении;
2) освободить учителя от монотонной технической работы, с тем
чтобы он мог больше времени уделять творческой деятельности.
3) развивать у учеников методы самостоятельной работы. Кроме
того, позволяет:
а) в ряде случаев дать учащимся более полную и точную инфор-
мацию об изучаемом явлении; с помощью компьютерной мультипликации
(или компьютерного видео), например, показать тела в состоянии
невесомости, выход человека в открытый космос, доменную структуру
ненамагниченного и намагниченного ферромагнетика, быстротечные
микропроцессы (например процессы в RLC-цепочке, скин-эффект) и
т.п.;
б) повысить наглядность, создать представления о механизме
сложных явлений и тем самым облегчить учащимся их понимание; так
средствами компьютерной мультипликации даются модельные представ-
ления об электрическом токе в проводниках разного рода, явлениях,
происходящих в атомных ядрах, о взаимодействии элементарных час-
- 50 -
тиц и т.д.
в) ознакомить учащихся с характером быстро и медленно проте-
кающих процессов, а также невидимых явлений;
г) познакомить учащихся с фундаментальными физическими экспе-
риментами, постановка которых в классе затруднена или невозмож-
на,- опытами Штерна, Резерфорда, Милликена и Иоффе, Стюарта, Ка-
вендиша и т.п.;
д) более успешно решать задачи политехнического образования,
поскольку компьютерная анимация позволит дать представление о
конструкции машин и механизмов и о физических принципах их рабо-
ты, а также показать переход от принципиальной схемы того или
иного технического устройства к её конкретному конструктивному
решению (например видеофрагменты по темам:"Машины переменного то-
ка","Радиолокация" и т.д.);
е) проводить контроль знаний учащихся учитывая их индивиду-













