149596 (731901), страница 5

Файл №731901 149596 (Лекции по гидравлике) 5 страница149596 (731901) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

другими силами, действующими в многофазной жидкости, увеличивают силы сопротив­ления движению жидкости.

Примеров многофазных жидкостей в природе достаточно: эмульсии - смеси двух и более нерастворимых друг в друге жидкостей; газированные жидкости - смеси жидкости со свободным газом, окклюзии - смеси жидких и газообразных углеводородов; суспензии и пульпы - смеси жидкостей и твёрдых частиц, находящихся в жидкости во взвешенном состоянии и т.д.

1.4. Неньютоновские жидкости

Многокомпонентные жидкости как гомогенные, так и гетерогенные, в большей сте­пени, могут содержать в своём составе компоненты, значительно изменяющие вязкость жидкости, и даже кардинально меняющие саму физическую основу и природу внутренне­го трения. В таких жидкостях гипотеза вязкостного трения Ньютона (пропорциональность напряжений градиенту скорости относительного движения жидкости) неприменима. Со­ответственно такие жидкости принято называть неньютоновскими жидкостями.

Среди неньютоновских жидкостей принято выделять вязкопластичные жидкости, псевдопластичные жидкости и дилатантные жидкости. Для вязкопластичных жидкостей характерной особенностью является то, что они до достижения некоторого критического внутреннего напряжения т0 ведут себя как твёрдые тела и лишь при превышении внут­реннего напряжения выше критической величины начинают двигаться как обычные жид­кости. Причиной такого явления является то, что вязкопластичные жидкости имеют про­странственную жёсткую внутреннюю структуру, сопротивляющуюся любым внутренним напряжениям меньшим критической величины, это критическое напряжение в литературе называют статическим напряжением сдвига. Для вязкопластичных жидкостей справедли­вы следующие соотношения Бингама:

Для псевдопластичных жидкостей зависимость между внутренним напряжением сдвига и градиентом скорости относительного движения слоев жидкости в логарифмиче­ских координатах оказывается на некотором участке линейной. Угловой коэффициент со­ответствующей прямой линии заключён между 0 и 1 Поэтому зависимость между напря­жением и градиентом скорости можно записать в следующем виде:

где: k - мера консистенции жидкости,

п - показатель, характеризующий отличие свойств псевдопластичной жидкости от ньютоновской.

Для псевдопластичных жидкостей полезно ввести понятие кажущейся вязкости жид­кости

тогда: , т.е. величина кажущейся вязкости псевдопластичной жидко-

сти убывает с возрастанием градиента скорости.

Дилатантные жидкости описываются тем же самым уравнением, что и псевдопла­стичные жидкости, но при показателе п > 1 .У таких жидкостей кажущаяся вязкость уве­личивается при возрастании градиента скорости. Такая модель жидкости может быть применена при описании движения суспензий.

Неньютоновские жидкости обладают ещё одним свойством, их вязкость существен­ным образом зависит от времени. По этой причине (например, для вязкопластичных жид­костей) величина статического напряжения сдвига зависит от предыстории: чем более длительное время жидкость находилась в состоянии покоя, тем выше величина неё стати­ческого напряжения сдвига. Если прервать движение такой жидкости (остановить её), то для начала движения такой жидкости потребуется развить в жидкости меньшее напряже­ние, чем и том случае, когда она находилась в покое длительное время. Следовательно, необходимо различать величину начального статического напряжения сдвига и динамиче­скую величину этого показателя. Жидкости, которые обладают такими свойствами, назы­ваются тиксотропными. Жидкости, у которых наоборот динамические характеристики выше, чем начальные называются реопектическими неньютоновскими жидкостями. Такие явления объясняются тем, что внутренняя структура таких жидкостей способна упроч­няться с течением времени, или (в другом случае) для восстановления начальных свойств им требуется некоторое время.

2 .Основы гидростатики 2.1. Силы, действующие в жидкости

Поскольку жидкость обладает свойством текучести и легко деформируется под дей­ствием минимальных сил, то в жидкости не могут действовать сосредоточенные силы, а возможно существование лишь сил распределённых по объёму (массе) или по поверхно­сти. В связи с этим действующие на жидкости распределённые силы являются по отноше­нию к жидкости внешними. По характеру действия силы можно разделить на две катего­рии: массовые силы и поверхностные.

Массовые силы пропорциональны массе тела и действуют на каждую жидкую час­тицу этой жидкости. К категории массовых сил относятся силы тяжести и силы инерции переносного движения. Величина массовых сил, отнесённая к единице массы жидкости, носит название единичной массовой силы. Таким образом, в данном случае понятие о единичной массовой силе совпадает с определением ускорения. Если жидкость, находится под действием только сил тяжести, то единичной силой является ускорение свободного падения:

где М' - масса жидкости

Если жидкость находится в сосуде, движущимся с некоторым ускорением а, то жид­кость в сосуде будет обладать таким же ускорением (ускорением переносного движения):

Поверхностные силы равномерно распределены по поверхности и пропорциональны площади этой поверхности. Эти силы, действуют со стороны соседних объёмов жидкой среды, твёрдых тел или газовой среды. В общем случае поверхностные силы имеют две составляющие нормальную и тангенциальную. Единичная поверхностная сила называется напряжением. Нормальная составляющая поверхностных сил называется силой давления Р, а напряжение (единичная сила) называется давлением:

5

где: S - площадь поверхности.

Напряжение тангенциальной составляющей поверхностной силы Т (касательное на­пряжение ) определяется аналогичным образом (в покоящейся жидкости Т=0).

Величина давления (иногда в литературе называется гидростатическим давлением) в системе СИ измеряется в паскалях.

Поскольку эта величина очень мала, то величину давления принято измерять в мега-паскалях МПа

1МПа = \ 106 Па.

В употребляемой до сих пор технической системе единиц давление измеряется в технических атмосферах, am. С,

1 am = \кГ/см2 = 0,1 МПа, 1 МПа = 10 am.

В технической системе единиц давление кроме технической атмосферы измеряется также в физических атмосферах, А.

\А = 1,033 am.

Различают давление абсолютное, избыточное и давление вакуума. Абсолютным дав­лением называется давление в точке измерения, отсчитанное от нуля. Если за уровень от­счёта принята величина атмосферного давления, то разница между абсолютным давлени­ем и атмосферным называется избыточным давлением.

Если давление, измеряемое в точке ниже величины атмосферного давления, то раз­ница между замеренным давлением и атмосферным называется давлением вакуума

Избыточное давление в жидкостях измеряется манометрами. Это весьма обширный набор измерительных приборов различной конструкции и различного исполнения. 2.2. Свойства гидростатического давления

В неподвижной жидкости возможен лишь один вид напряжения - напряжение сжа­тия. Как отмечалось ранее, жидкость в общем случае может находиться под действием двух сил - силы давления равномерно распределённой по всей внешней поверхности вы­деленного жидкого тела и массовых сил, определяемых характером переносного движе­ния. Под внешней границей жидкого тела могут пониматься как соседние тела: твёрдые (стенки сосуда или трубы, в которые помещена жидкость), газообразные (поверхность раздела между жидкостью и газовой средой), так и условные поверхности, мысленно вы­деляемые внутри самой жидкости. Действующее на внешнюю поверхность жидкости дав­ление обладает двумя основными свойствами: t

1. Давление всегда направлено по внутренней нормали к выделенной поверхности. Это свойство вытекает из самой сущности давления и доказательств не требует. Тем не менее, поясним этот постулат простым примером. Отсечём от жидкого тела часть его объ-

ёма и для сохранения равновесия оставшейся части жидкости приложим к образовав­шемуся сечению систему распределённых сил. По своей вели­чине и напрвлению действия эти силы должны обеспечить эк­ вивалентное влияние на оставшийся объём жидкости со сторо­ны отсечённой части жидкого тела. Поскольку в покоящейся

жидкости не могут существовать касательные напряжения, то приложенные к сечению силы могут быть направлены лишь по внутренней нормали к площади сечения.

2. В любой точке внутри жидкости давление по всем направлениям одинаково. Дру­гими словами величина давления в точке не зависит от ориентации площадки, на которую действует давление.

Для доказательства этого положения выде­лим в районе произвольно выбранной точки на­ходящейся внутри жидкости малый отсек жид­кости в виде тетраэдра. Три взаимно перпенди­кулярные грани отсека будут параллельны ко­ординатным плоскостям, четвёртая грань распо­ложена под произвольным углом (по отноше­нию к одной из координатных плоскостей). От­ бросим массу жидкости, находящуюся с внеш­ней стороны поверхности тетраэдра, а действие

отброшенной массы жидкости на выделенный отсек заменим силами, которые обеспечат равновесие в покоящейся жидкости. При такой замене мы сделали некоторое допущение, ввели сосредоточенные силы, действующие на грани отсека. Однако это допущение мож- . но считать справедливым ввиду малости отсека. Тогда для обеспечения равновесия на от­сек жидкости должны действовать силы давления нормальные к граням отсека ; корме того, на этот же отсек жидкости будут действовать массовые силы

характер действия которых определяется переносным движением, т.е. движе­нием сосуда, относительно которого покоится жидкость. Величина массовых сил будет

пропорциональна массе жидкости в отсеке:

Запишем уравнение равновесия отсека жидкости в проекциях на оси координат.

Выразив силы через напряжения, уравнения равновесия будут иметь следующий вид:

Характеристики

Тип файла
Документ
Размер
1,29 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее