vision (729758)

Файл №729758 vision (Техническое зрение роботов)vision (729758)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Техническое зрение роботов

1.ВВЕДЕНИЕ

С целью классификации методов и подходов, используемых в си­стемах технического зрения, зрение разбито на три ос­новных подкласса: зрение низкого, среднего и высокого уров­ней. Системы технического зрения низкого уровня предназначены для обработки информа­ции с датчиков очувствления.

Эти системы можно отнести к классу «интеллектуальных» машин, если они обладают следующими признаками (призна­ками интеллектуального поведения):

1) возможностью выделения существенной информации из множества независимых признаков;

2) способностью к обучению на примерах и обобщению этих знаний с целью их применения в новых ситуациях;

3) возможностью восстановления событий по неполной ин­формации;

4) способностью определять цели и формулировать планы для достижения этих целей.

Создание систем технического зрения с такими свойствами для ограниченных видов рабочего пространства в принципе воз­можно, но характеристики таких систем далеки от возможностей человеческого зрения. В основе технического зрения лежит аналитическая формализация, направленная на решение конкрет­ных задач. Машины с сенсорными характеристиками, близкими к возможностям человека, по-видимому, появятся еще не скоро. Однако отметим, что копирование природы не является единст­венным решением этой проблемы. Читателю наверняка известны ранние экспериментальные образцы аэропланов с машущими крыльями и другими особенностями полета птиц. Современное решение задачи о полете в пространстве в корне отличается от решений, подсказанных природой. По скорости и достижимой высоте самолеты намного превосходят возможности птиц.

Системы технического зрения среднего уровня связаны с задачами сегментации, описания и распознавания отдельных объектов. Эти задачи охватывают множество подходов, ос­нованных на аналитических представлениях. Системы техниче­ского зрения высокого уровня решают проблемы, рассмотренные выше. Для более ясного понимания проблем технического зре­ния высокого уровня и его связи с техническим зрением низкого и среднего уровней введем ряд ограничений и упростим решае­мую задачу.

2.СЕГМЕНТАЦИЯ

Сегментацией называется процесс подразделения сцены на составляющие части или объекты. Сегментация является одним из основных элементов работы автоматизированной системы технического зрения, так как именно на этой стадии обработки объекты выделяются из сцены для дальнейшего распознавания и анализа. Алгоритмы сегментации, как правило, основываются на двух фундаментальных принципах: разрывности и подобии. В первом случае основной подход основывается на определении контуров, а во втором — на определении порогового уровня и расширении области. Эти понятия применимы как к статиче­ским, так и к динамическим (зависящим от времени) сценам. В последнем случае движение может служить мощным средст­вом для улучшения работы алгоритмов сегментации.

2.1.Проведение контуров и определение границы

Методы - вычисление градиента, пороговое разделение - определяют разрывы в интенсивности представления образа объекта. В идеальном слу­чае эти методы определяют пикселы, лежащие на границе меж­ду объектом и фоном. На практике данный ряд пикселов редко полностью характеризует границу из-за шума, разрывов на гра­нице вследствие неравномерной освещенности и других эффек­тов, приводящих к размытию изображения. Таким образом, ал­горитмы обнаружения контуров сопровождаются процедурами построения границ объектов из соответствующих последователь­ностей пикселов. Ниже рассмотрено несколько методик, при­годных для этой цели.

2.1.1.Локальный анализ.

Одним из наиболее простых подходов соединения точек контура является анализ характеристик пик­селов в небольшой окрестности (например, в окрестности раз­мером 3 X 3 или 5 X 5) каждой точки (х, у) образа, который уже подвергся процедуре обнаружения контура. Все точки, яв­ляющиеся подобными (определение критерия подобия дано ниже), соединяются, образуя границу из пикселов, обладающих некоторыми общими свойствами.

При таком анализе для установления подобия пикселов кон­тура необходимо определить:

1 ) величину градиента, требуемого для построения контурного пиксела,

2) направление градиен­та.

Первая характеристика обозначается величиной G{f(x, у)].

Таким образом, пиксел контура с координатами (х', у') подобен по величине в определенной ранее окрестности (х, у) пикселу с координатами (х, у), если справедливо неравенство

где Тпороговое значение.

Направление градиента устанавливается по углу вектора градиента, определенного в уравнении

где —угол (относительно оси х), вдоль которого скорость изменения имеет наибольшее значение. Тогда можно сказать, что угол пиксела контура с координатами {х', у') в некоторой окрестности (х, у) подобен углу пиксела с координатами {х, у) при выполнении следующего неравенства:

где Апороговое значение угла. Необходимо отметить, что на­правление контура в точке {х, у) в действительности перпенди­кулярно направлению вектора градиента в этой точке. Однако для сравнения направлений неравенство дает эквивалент­ные результаты.

Основываясь на этих предположениях, мы соединяем точку в некоторой окрестности (х, у) с пикселом, имеющим коорди­наты (х, у), если удовлетворяются критерии по величине и направлению. Двигаясь от пиксела к пикселу и представляя каждую присоединяемую точку как центр окрестности, процесс повторяется для каждой точки образа. Для установления соот­ветствия между уровнями интенсивности освещения и последо­вательностями пикселов контура применяется стандартная биб­лиотечная процедура.

Цель состоит в определении размеров прямоугольни­ков, с помощью которых можно построить качественное изобра­жение. Построение таких прямоугольников осуществляется в ре­зультате определения строго горизонтальных и вертикальных контуров. Дальнейший процесс состоял в соединении сегментов контура, разделенных небольшими промежутками, и в объединении отдельных корот­ких сегментов.

2.1.2.Глобальный анализ с помощью преобразования Хоуга.

Рас­смотрим метод соединения граничных точек путем определения их расположения на кривой специального вида. Первоначально предполагая, что на плоскости ху образа дано п точек, требуется найти подпоследовательности точек, лежащих на прямых линиях. Одно из возможных решений состоит в построении всех линий, проходящих через каждую пару точек, а затем в нахож­дении всех подпоследовательностей точек, близких к определен­ным линиям. Задача, связанная с этой процедурой, заключается в нахождении п(п 1)/2 ~ п2 линий и затем в осуществлении п[п(п1)]/2 ~ п3 сравнений каждой точки со всеми линиями. Этот процесс трудоемок с вычислительной точки зрения за ис­ключением самых простых приложений.

Данную задачу можно решить по-другому, применяя подход, предложенный Хоугом и называемый преобразованием Хоуга. Рассмотрим точку (хi yi) и общее уравнение прямой ли­нии у:= аxi + bi. Имеется бесконечное число линий, проходящих через точку (хi yi), но все они удовлетворяют уравнению у:= аxi + bi при различных значениях а и b. Однако, если мы за­пишем это уравнение в виде b = i а + yi и рассмотрим пло­скость аb (пространство параметров), тогда мы имеем уравне­ние одной линии для фиксированной пары чисел (хi yi). Более того, вторая точка j, уj) также имеет в пространстве пара­метров связанную с ней линию, которая пересекает другую ли­нию, связанную с точкой (хi yi) в точке (а', b’), где значения а' и b’—параметры линии, на которой расположены точки (хi yi) и (хj, уj) в плоскости ху. Фактически все точки, расположен­ные на этой линии, в пространстве параметров будут иметь ли­нии пересечения в точке (а', b’).

Вычислительная привлекательность преобразования Хоуга заключается в разделении пространства параметров на так на­зываемые собирающие элементы , где (aмакс, амин) и (bмакс, bмин)—допустимые величины параметров линий. Собирающий элемент A (i, j) соответствует площади, связанной с ко­ординатами пространства параметров (аi, bj). Вначале эти элементы считаются равными нулю. Тогда для каждой точки (xk, уk) в плоскости образа мы полагаем параметр а равным каж­дому из допустимых значений на оси а и вычисляем соответст­вующее b, используя уравнение b = -хk + yk Полученное значение b затем округляется до ближайшего допустимого зна­чения на оси b. Если выбор aр приводит к вычислению bq, мы полагаем А(р, q) ==А(р, q) + 1. После завершения этой про­цедуры значение М в элементе A (i, j) соответствует М точкам в плоскости xy, лежащим на линии y=aix+b. Точность рас­положения этих точек на одной прямой зависит от числа раз­биений плоскости аb. Отметим, что, если мы разбиваем ось а на К частей, тогда для каждой точ­ки (xk, уk) мы получаем К зна­чений b, соответствующих К воз­можным значениям а. Посколь­ку имеется п точек образа, про­цесс состоит из пК вычислитель­ных операций. Поэтому приве­денная выше процедура линейна относительно п и имеет меньшее число вычислительных опера­ций, чем процедура, описанная выше, если К<= п.

Проблема, связанная с пред­ставлением прямой линии урав­нением у = ах + b, состоит в том, что оба параметра а и b стремятся к бесконечности, если линия принимает вертикаль­ное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде

xcos+ysin=.

Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости . Как и прежде, М точек, лежащих на прямой xcosi+уsini == i, соответствуют М синусоидальным кривым, кото­рые пересекаются в точке (i, i) пространства параметров. Если используется метод возрастания и нахождения для него соот­ветствующего , процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (i, i).

2.1.3.Глобальный анализ с помощью методов теории графов.

Изложенные выше методы основаны на задании последовательности точек контура, полученных в результате градиентного пре­образования. Этот метод редко применяется для предваритель­ной обработки данных в ситуациях, характеризуемых высоким уровнем шума, вследствие того, что градиент является произ­водной и усиливает колебания интенсивности. Рассмотрим гло­бальный подход, основанный на представлении сегментов кон­тура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно слож­нее и требует больше времени обработки, чем методы, изложен­ные выше.

Сначала дадим несколько простых определений. Граф G = (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различ­ных элементов из N. Каждая пара из А называется дугой.

Граф, в котором дуги являются направленными, называется на­правленным графом. Если дуга выходит из вершины ni, к вер­шине пj, тогда пj называется преемником вершины ni. В этом случае вершина ni называется предшественником вершины пj. Процесс идентификации преемников каждой вершины назы­вается расширением этой вершины. В каждом графе опреде­ляются уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (ni пj) приписывается стоимость c(ni пj). Последовательность вер­шин п1, n2, ..., nk, где каждая вершина ni является преемником вершины ri-1, называется путем от ni к пk, а стоимость пути определяется формулой

.

Элемент контура мы определим как границу между двумя пик­селами р и q. В данном контексте под контуром пони­мается последовательность элементов контура.

2.2.Определение порогового уровня

Понятие порогового уровня (порога) тест вида

Характеристики

Тип файла
Документ
Размер
230,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6518
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее