vision (729758), страница 2

Файл №729758 vision (Техническое зрение роботов) 2 страницаvision (729758) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Т = Т [х, у, р (х, у), f (х, у)],

где f(x, у)интенсивность в точке (х, у), р(х, у)некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:

так что пикселы в g(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объек­тов больше интенсивности фона. Противоположное условие по­лучается путем изменения знаков в неравенствах.

2.2.1.Глобальные и локальные пороги.

Если значение Т в уравне­нии зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.

Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображе­ния, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.

Ниже мы рассмотрим ряд методов для выбора порогов, ис­пользуемых при сегментации. Хотя некоторые из них могут при­меняться для выбора глобального порога, они обычно исполь­зуются в ситуациях, требующих анализа локального порога.

2.2.2.Выбор оптимального порога.

Часто рассматривают гисто­грамму, состоящую из суммы значений функции плотности ве­роятности. В случае бимодальной гистограммы аппроксимирую­щая ее функция дается уравнением

p(z)=P1p1(z)+P2p2(z),

где интенсивность zслучайная переменная величина, p1(z) и p2(z)функции плотности вероятности, a P1 и P2 – априорные вероятности. В данном случае априорные вероятности означают появление двух видов уровней интенсивности на образе. Полная гистограмма может быть аппроксимирована суммой двух функций плотности вероятности. Если известно, что объект состоит из светлых пиксе­лов и они занимают 20 % площади образа, то Pi ==0,2. Необхо­димо, чтобы

Р1+Рг=1.

В данном случае это означает, что на остальную часть образа приходится 80 % пикселов фона. Введем две следующие функции от z:

d1(z)=P1p1(z),

d2(z)=P1p1(z).

Из теории принятия решений известно, что средняя ошибка определения пиксела объекта в качестве фона (и на­оборот) минимизируется с помощью следующего правила: рас­сматривая пиксел со значением интенсивности z, мы подстав­ляем это значение z в уравнения (8.2-13) и (8.2-14). Затем мы определяем пиксел как пиксел объекта, если d1(z) >d2(z), или как пиксел фона, если d2(2) > d1(z). Тогда оптимальный порог определяется величиной z, для которой d1{z)=d2(z). Таким образом, полагая в уравнениях z=T, полу­чаем, что оптимальный порог удовлетворяет уравнению

P1р1(T)=P2p2(T).

рис. Гистограмма интенсивности (а) и ее аппроксимация в виде •суммы двух функций плотности вероятности (б).

Итак, если известны функциональные зависимости p1(z) и р2(г),. это уравнение можно использовать для нахождения оптималь­ного порога, который отделяет объекты от фона. Если этот порог известен, уравнение может быть использовано для сегментации данного образа.

2.2.3.Определение порогового уровня на основе характеристик границы.

Одним из наиболее важных аспектов при выборе по­рогового уровня является возможность надежно идентифициро­вать модовые пики для данной гистограммы. Это важно при автоматическом выборе порогового уровня в ситуациях, когда характеристики образа меняются вследствие большого разброса интенсивности. Из изложенного выше очевидно, что возможность выбора «хорошего» порогового уровня может быть существенно увеличена в случае, если пики гистограмм являются высокими, узкими, симметричными и разделены глубокими провалами.

Одним из подходов для улучшения вида гистограмм является рассмотрение только тех пикселов, которые лежат на границе (или около нее) между объектами и фоном. Одно из очевидных улучшений состоит в том, что этот подход позволяет получать гистограммы менее зависимыми от отношения между объектом и фоном. Например, гистограмма интенсивности образа, состав­ленного из маленького объекта на большой площади постоян­ного фона, определялась бы большим пиком вследствие концент­рации пикселов фона. С другой стороны, результирующие гисто­граммы имели бы пики с более сбалансированными высотами, если бы рассматривались пикселы, лежащие только на (или около) границе между объектом и фоном. Кроме того, вероят­ность расположения пиксела на границе объекта практически равна вероятности того, что он лежит на границе фона, что улучшает симметрию гистограммных пиков. Окончательно, как показано ниже, использование пикселов, которые удовлетво­ряют некоторым простым критериям, основанным на операторах градиента и Лапласа, приводит к увеличению провалов между пиками гистограммы.

Выше мы неявно подразумевали, что граница между объек­тами и фоном известна. Очевидно, что во время проведения сег­ментации эта информация отсутствует, поскольку нахождение раздела между объектами и фоном является окончательной целью приведенной здесь процедуры. Однако, что, вычислив градиент пиксела, можно определить, ле­жит ли он или не лежит на контуре. Кроме того, лапласиан мо­жет дать информацию о том, лежит ли данный пиксел на темной (т. е. фон) или светлой (объект) стороне контура. С внутренней стороны идеального контура лапласиан равен нулю, поэтому на практике можно ожидать, что провалы гистограмм, образованных пикселами, выбранными по критерию градиент/лапласиан, будут располагаться достаточно редко и иметь желаемую высоту.

Градиент G[f(x,y)] любой точки образа и лапласиан L[f{x, у)]. Эти два свойства можно использовать для фор­мирования трехуровнего образа:

(где символы 0, +, - представляют три различных уровня осве­щенности, а Тпороговый уровень. Предположим, что темный объект располагается на светлом фоне, тогда применение уравнения дает образ s(x, у), в котором все пикселы, не лежащие на контуре (для них значе­ние G[f (х, у)] меньше Т, помечены 0, все пикселы на темной стороне контура помечены + и все пикселы на светлой стороне контура помечены —. Для светлого объекта на темном фоне символы + и - в уравнении (8.2-24) меняются местами.

Только что изложенная процедура может применяться для создания сегментированного, бинарного образа, в котором 1 со­ответствует объектам, представляющим интерес, и 0—фону. Отметим, что перемещение (вдоль горизонтальных или вер­тикальных линий сканирования) от светлого фона к темному объекту должно характеризоваться заменой знака - фона на -1- объекта s(x, у). Внутренняя область объекта состоит из пикселов, помеченных либо 0 либо +. Окончательно перемещение от объекта к фону характеризуется заменой знака + на —. Таким образом, горизонтальные или вертикальные линии сканирования, содержащие части объекта, имеют следующую структуру:

(...)(-, +)(0 или +)(+, -)(•••),

где (...) является произвольной комбинацией +, - или 0. Остальные скобки содержат точки объекта и помечены 1. Все другие пикселы вдоль той же линии сканирования помечаются 0, за исключением всех последовательностей из (0 или +), огра­ниченных (-, +) и (+, -).

2.2.4.Определение порогового уровня, основанное на нескольких переменных.

Изложенные выше методы связаны с определением порогового уровня для единст­венного переменного значения интенсивности. В некоторых приложениях можно исполь­зовать более одной перемен­ной для характеристики каждо­го пиксела образа, увеличивая таким образом не только сте­пень различия между объек­том и фоном, но и между сами­ми объектами. Одним из наи­более значимых примеров явля­ется цветное зрение, где исполь­зуются красные, зеленые и голубые компоненты (КЗГ) для формирования составно­го цветного образа. В этом случае каждый пиксел характеризуется тремя переменными и это позволяет строить трехмерную гистограмму. Основная процедура та же, что и для одной переменной. Пусть, например, даны три 16-уровневых изображения, соответствующие КЗГ компонентам датчика цвета. Сформируем кубическую решетку 16х16х16 и поместим в каждый элемент пикселы, КЗГ ком­поненты которых имеют интенсивности, соответствующие коор­динатам, определяющим положение этого элемента. Число то­чек в каждом элементе решетки может быть затем разделено на общее число пикселов образа для формирования нормированной гистограммы.

Теперь выбор порога заключается в нахождении групп точек в трехмерном пространстве, где каждая «компактная» группа аналогична основной моде гистограммы одной переменной. На­пример, предположим, что мы ищем две значимые группы точек данной гистограммы, где одна группа соответствует объекту, а другая—фону. Принимая во внимание, что теперь каждый пик­сел имеет три компоненты и может быть рассмотрен как точка трехмерного пространства, можно сегментировать образ с по­мощью следующей процедуры. Для каждого пиксела образа вычисляется расстояние между этим пикселом и центром каж­дой группы. Тогда, если пиксел располагается рядом с центром группы точек объекта, мы помечаем его 1; в противном случае мы помечаем его 0. Это понятие легко распространить на боль­шую часть компонентов пиксела и соответственно на большую часть групп. Основная сложность состоит в том, что определение значимых групп, как правило, приводит к довольно сложной задаче, поскольку число переменных возрастает.

2.3.Областно-ориентированная сегментация

2.3.1.Основные определения.

Целью сегментации является разде­ление образа на области. Рассмотрим методы сегмен­тации, основанные на прямом нахождении областей.

Пусть R область образа. Рассмотрим сегментацию как процесс разбиения R на n подобластей R1, R2, ..., Rn, так что

1.

2. Piсвязная область, i= 1, 2, ..., п,

3. Ri Ri = для всех i и j, i j,

4. P(Ri) есть ИСТИНА для i= 1, 2, ..., n;

5. P(Ri U Ri) есть ЛОЖЬ для i j, где P(Ri)— логический предикат, определенный на точках из множества Ri, и -пу­стое множество.

Условие 1 означает, что сегментация должна быть полной, т. е. каждый пиксел должен находиться в образе. Второе усло­вие требует, чтобы точки в области были связными. Условие 3 указывает на то, что области не должны пересекать­ся. Условие 4 определяет свойства, которым должны удовлетво­рять пикселы в сегментированной области. Простой пример: Р(Ri) = ИСТИНА, если все пикселы в Ri имеют одинаковую интенсивность. Условие 5 означает, что области Ri и Ri разли­чаются по предикату Р.

2.3.2.Расширение области за счет объединения пикселов.

Характеристики

Тип файла
Документ
Размер
230,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6518
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее