D_L (729432), страница 6

Файл №729432 D_L (Разработка и внедрение автоматизированных систем управления технологического оборудования минипекарень) 6 страницаD_L (729432) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Результаты опыта холостого хода обычно изображают графически - путем построения зависимости потерь P0, фазного тока I0 и коэффициента мощности cosФ0 в функции напряжения.

При опыте холостого хода допускается не более чем 2 % отклонение частоты сети от номинальной, но результаты измерений следует пересчитать на номинальную частоту. Для этого измеренные напряжения пересчитывают пропорционально первой степени частоты, потери в стали пропорционально 1,5 частоты и механические потери пропорционально квадрату частоты.

При приемо-сдаточных испытаниях измеряют ток и потери холостого хода лишь при номинальном значении напряжения.

7.3.3Определение тока и потерь короткого замыкания.

При опыте короткого замыкания на статор подается напряжение, ротор затормаживается, а в случае фазного ротора обмотки закорачиваются накоротко на кольцах. Напряжение, подаваемое на статор, должно быть практически симметрично и номинальной частоты.

В процессе опыта одновременно измеряют подводимое напряжение, ток статора (линейный ток Ik короткого замыкания), потребляемую мощность Pk (kBт), начальный пусковой момент (для электродвигателей малой и средней мощности), а непосредственно после опыта определяют сопротивление r1k обмотки статора между выводами, соответствующее температуре в конце опыта. Начальный пусковой момент Mп=Mк (Нм) измеряют при опыте динамометром или весами на конце рычага (которым заторможен ротор, закрепляемым шпонкой на свободном конце вала двигателя, или весами балансирной машины.

Для электродвигателей его определяют расчетно по измеренным потерям Рk короткого замыкания (численно равным мощности, потребляемой при опыте):

Мк=0.9*9550Ркм2/nc,

Ркм2-потери в обмотке ротора при опыте короткого замыкания, кВт; 0,9 - коэффициент, ориентировочно учитывающий действие высших гармоник.

Потери (кВт) в обмотке ротора при опыте короткого замыкания:

Pкм2ккм1с ,

где Ркм1- потери в обмотке статора при опыте короткого замыкания, кВт ; Рс- потери в стали, определяемые из опыта холостого хода, кВт.

Потери в обмотке статора при опыте короткого замыкания:

Ркм1=Ik2 r1k/1000.

Для получения зависимостей (необходимых при приемочных и других полных испытаниях) потребляемой мощности Рк, тока Ik, коэффициента мощности сosjк и начального пускового момента Мк от напряжения Uk, приложенного к двигателю в режиме короткого замыкания, проводят 5...7 отсчетов при разных значениях этого напряжения.

В процессе приемо-сдаточных испытаний ток и потери короткого замыкания измеряют при одном значении напряжения короткого замыкания:

Uk=UH/3,8 ,

где UH- нормальное напряжение двигателя.

Во время проведения опыта короткого замыкания первый отсчет рекомендуется проводить при следующих значениях напряжения короткого замыкания в зависимости от UH:

UH,В ... 127 220 380 440 500 660 3000 6000 10000

UK,В ... 33 58 100 115 130 173 800 1600 2640

Второй отсчет - при напряжении (1-0,1) UH. Требуемое напряжение Uk подают начиная с минимального значения. Во избежание чрезмерного нагрева обмоток токами короткого замыкания рекомендуется отсчет по приборам при каждом значении подведенного напряжения производить за время не более 10с, а после отсчета двигатель сразу отключать.

По данным опыта короткого замыкания определяют коэффициент мощности:

cosjk = Pk/( Uk Ik ).

Коэффициент мощности можно найти и по отношению показаний двух ваттметров (а1/а2), воспользовавшись рис.7.1. Для этого на оси ординат откладывают полученное значение отношений двух ваттметров (а1 и а2 - деления шкалы ваттметров) с учетом знака этого отношения проводят для этого значения горизонтальную прямую до пересечения с линией cosj (или sinj), сносят точку пересечения на ось абсцисс, по шкале оси абсцисс определяют искомое значение cosj (или sinj).

Для графического изображения результатов опыта короткого замыкания откладывают в функции от напряжения следующие величины: ток короткого замыкания Iк, потери короткого замыкания Рк, коэффициент мощности cosjк и вращающий момент при коротком замыкании Мк. Если опыт короткого замыкания проведен при пониженном напряжении, то при определении тока и вращающего момента, соответствующих номинальному напряжению, вводят поправку на насыщение путей потоков рассеяния, строя зависимость тока короткого замыкания от напряжения (рис. 7.2).

рис.7.1,7.2

Возрастание тока от напряжения принимают идущим по касательной; определяют точку пересечения касательной с осью абсцисс Uк1. Тогда ток короткого замыкания при номинальном напряжении Iк.н , называемый начальным пусковым током, находят по формуле:

IK.H=(UH - UK1 ) IK/(UK - UK1)

где IK,UK - соответственно наибольшие ток, А, и напряжение, В, измеренные в процессе опыта; UH - номинальное напряжение, В.

Вращающий момент при коротком замыкании, соответствующий номинальному напряжению, называемый начальным пусковым вращающим моментом МКН, определяют

МКН = (IКН/IК)2´МК ,

где Мк- вращающий момент при наибольшем напряжении опыта короткого замыкания, Нм.

Начальный пусковой ток и начальный пусковой момент можно также определить при пуске, а начальный пусковой момент, кроме того, измеряют при снятии статической кривой момента. Величина начального пускового момента зависит от относительного положения зубцов статора и ротора в момент измерения. Поэтому за величину начального пускового момента принимают наименьшее из измеренных его значений.

7.4Определение КПД, коэффициента мощности и скольжения по рабочей характеристике

Рабочая характеристика, то есть зависимость потребляемой мощности, тока, скольжения, КПД и коэффициента мощности от полезной мощности, снимается при неизменных и номинальных приложенным напряжении и частоте, изменяющейся нагрузке от холостого хода до 110 % номинальной (5-7 значений), и температуре, близкой к установившейся при номинальной нагрузке. В процессе опыта измеряют линейные напряжения Uн и ток I, потребляемую мощность Р1 и скольжение s двигателя. По результатам измерений определяют коэффициент мощности.

Для контроля коэффициент мощности находят по отношению показаний двух ваттметров.

Сумма потерь асинхронного двигателя вычисляется как:

РSм1м2смехД,

где Рм1 , Рм2 , Рс , Рмех , РД - потери собственно в обмотках статора, ротора и стали; механические и добавочные потери.

Если рабочую характеристику нет возможности снять при номинальном напряжении, тогда ее определяют при напряжении 0.5UH<=Ur<=1.15UH. Полученные результаты испытаний в этом случае можно привести к номинальному напряжению по следующим формулам:

s1=sr; P1=P1r(UH/Ur)2;

I=Ir(UH/Ur )+DI0;

DI0=I0sinj0 - I0r(UH/Ur)sinj0r ,

где sr , Ir , I0r , j0r - величины соответственно скольжения, потребляемой мощности, тока, тока холостого хода и угол между векторами тока и напряжения, измеренные при холостом ходе и напряжении Ur; s1, P1, I, I0, sinj0 - аналогичные величины при номинальном напряжении.

Значение тока при номинальном напряжении:

.

7.5Определение максимального и минимального вращающих моментов

7.5.1Определение максимального вращающего момента

Максимальный вращающий момент - один из основных показателей асинхронной машины. Так как только кратность максимального вращающего момента и превышение температуры частей электродвигателя ограничивают возможности повышения мощности двигателя в данном габарите. Поэтому определять величину максимального вращающего момента следует с достаточно высокой точностью.

Максимальный вращающий момент находят следующими способами: определением кривой вращающего момента при пуске; непосредственным измерением вращающего момента при нагрузке электродвигателя; вычислением вращающего момента по мощности на валу и частоте вращения при нагрузке электродвигателя (при этом мощность на валу находят при помощи тарированной нагрузочной машины или методом отдельных потерь) и по круговой диаграмме, построенной по результатам опытов холостого хода и короткого замыкания.

При определении максимального вращающего момента находят соответствующее этому моменту скольжение (допускается применение тахометра).

7.5.2Определение кривой вращающего момента при пуске.

Этот способ используется обычно для нахождения максимального момента электродвигателей большой мощности, когда осуществить нагрузку испытуемого двигателя с помощью нагрузочной машины не представляется возможным. Для определения кривой вращающего момента испытуемый двигатель пускают вхолостую, а процесс пуска записывается с помощью ЭВМ. Основная трудность проведения этого опыта - кратковременность периода пуска электродвигателей. Для удлинения периода пуска увеличивают момент инерции испытуемого двигателя, соединяя его с другой электрической машиной, ротор которой служит добавочной маховой массой, или с тяжелым маховиком; или за счет понижения подводимого к испытуемому двигателю напряжения, но не менее 0,5 от номинального.

Обычно фиксируется угловое ускорение, пропорциональное вращающему моменту. При этом возникают следующие трудности. Напряжение в процессе пуска не остается неизменным вследствие изменения пускового тока в функции скольжения, поэтому полученные значения вращающего момента должны быть пересчитаны на номинальное напряжение пропорционально квадрату напряжения.

Кроме того, искажающее влияние на начальную часть процесса пуска оказывают переходные процессы при включении, а на машины с подшипниками скольжения - еще и высокое значение их начального момента трения. Для устранения искажающих воздействий прибегают к предварительному вращению испытуемого двигателя в противоположном направлении, затем, изменяя чередование фаз, реверсируют двигатель и записывают кривую вращающих моментов. Масштаб момента определяется по значению начального пускового момента, получаемого из опыта короткого замыкания. При записи кривой момента при реверсировании начальный пусковой момент соответствует частоте вращения, равной нулю.



7.5.3Способ определения максимального вращающего момента непосредственным измерением вращающего момента при нагрузке.

Этот способ наиболее точен, хотя для машин большой мощности, трудно осуществим. В качестве нагрузки используют балансирную машину или электромагнитный тормоз. Рекомендуется определять максимальный момент при номинальном напряжении. Для электродвигателей мощностью свыше 100 кВт допускается определение максимального момента при пониженном напряжении с последующим пересчетом пропорционально квадрату отношения напряжений. Обычно из-за влияния насыщения показатель степени для пересчета вращающего момента превышает 2. Более точные результаты можно получить, определяя максимальный момент при нескольких значениях напряжения, и на основании этого найти показатель степени зависимости вращающего момента от напряжения.

Наиболее часто в качестве балансирной нагрузочной машины используют генератор постоянного тока. Если генератор работает с неизменным возбуждением и нагрузочным сопротивлением, то зависимость момента от частоты вращения будет прямолинейной, исходящей из начала координат, с угловым коэффициентом, пропорциональным квадрату магнитного потока Ф. Такой вид нагрузочной характеристики позволяет определить точку, в которой вращающий момент испытуемого двигателя имеет максимальную величину. Однако часто приходится снимать всю кривую М = f(s), включая ее неустойчивую часть, для оценки провалов кривой моментов, вызванных влиянием синхронных и асинхронных моментов от высших гармоник. В этом случае вид нагрузочных кривых должен быть иным, чтобы обеспечить устойчивые точки пересечения с кривой момента испытуемого двигателя. Этого можно добиться, например, изменяя возбуждение генератора при работе его на общую сеть постоянного тока.

7.5.4Вычисление максимального вращающего момента по мощности на валу и частоте вращения при нагрузке электродвигателя.

Испытуемый асинхронный двигатель механически соединяют с генератором постоянного тока с независимым возбуждением, работающим на сеть с регулируемым напряжением. Изменение нагрузки двигателя производят регулирование напряжения сети, на которую работает нагрузочный генератор. Отсчеты производят при установившихся показаниях приборов. Предварительно снимают две характеристики машины постоянного тока: холостого хода при постоянной частоте вращения в генераторном режиме и зависимость тока холостого хода от частоты вращения I0 = f(n) при постоянном значении тока возбуждения (это значение тока возбуждения остается неизменным при определении максимального вращающего момента) в двигательном режиме без испытуемого двигателя.

Для определения искомой кривой зависимости вращающих моментов асинхронного двигателя от частоты вращения при испытании измеряют ток якоря генератора постоянного тока Iя è ÷астоты вращения испытываемого двигателя n(об/мин).

Величину вращающего момента (Нм) находят как:

М=9,55Е0(Iя+I0)/n ,

где Е0-ЭДС холостого хода.

По полученной кривой М = f(n) определяем максимальный вращающий момент.

7.5.5Определение минимального вращающего момента.

Достаточно точное определение величины минимального вращающего момента асинхронного двигателя имеет важное значение, так как снижение его ниже допустимого по стандарту может привести к “застреванию” электродвигателя на малой частоте вращения при пуске под нагрузкой. Такой режим работы близок к режиму короткого замыкания и является аварийным.

Минимальный вращающий момент определяют одним из следующих способов:

  1. из кривой вращающего момента, снятой с помощью регистрирующего прибора в процессе пуска;

  2. при непосредственной нагрузке балансирной машины или генератором постоянного тока с независимым возбуждением, работающим на сеть с регулируемым напряжением (при нагрузке с помощью генератора постоянного тока вращающий момент определяют непосредственно или с помощью тарированного генератора) и при непосредственной нагрузке тарированной асинхронной машиной, работающей в режиме противовключения и включенной в сеть с регулируемым напряжением.

Первые два способа дополнительных пояснений не требуют. Третий способ основан на том, что вращающий момент нагрузочной асинхронной машины работающей в режиме противовключения, остается практически постоянным в диапазоне скольжений от 1 до скольжения, соответствующего минимальному вращающему моменту, и зависят только от величины напряжения, подводимого к нагрузочной машине. Для избежания провалов в кривой М = f(n) нагрузочной асинхронной машины в режиме электромагнитного тормоза рекомендуется в этой машине увеличить воздушный зазор между статором и ротором путем дополнительной обработки ротора по наружному диаметру, в цепь фазного ротора следует включить дополнительные активные сопротивления, а в цепь статора - дополнительно индуктивное сопротивление. Испытания проводят следующим образом:

Нагрузочная асинхронная машина работает в режиме противовключения, то есть магнитное поле ее вращается в сторону противоположную вращению ротора, что создает соответствующий тормозной момент для испытуемого двигателя. Тормозной момент регулируют подводимым к нагрузочной машине напряжением при помощи источника регулируемого напряжения. Нагрузочную асинхронную машину следует заранее протарировать, то есть определить зависимость вращающего момента на валу от подводимого к машине напряжения при работе ее в режиме электромагнитного тормоза. При этом необходимо убедиться в отсутствии значительных колебаний величины тормозного момента нагрузочной машины при фиксированном напряжении в диапазоне скольжения от 1 до 2. Одну и ту же протарированную нагрузочную асинхронную машину вследствие постоянства момента при заданном напряжении можно использовать при испытании асинхронных двигателей с разными номинальными частотами вращения.

Для определения минимального вращающего момента на нагрузочную машину подают пониженное напряжение, соответствующее определенному значению тормозного вращающего момента. Одновременно с нагрузочной машиной включают на номинальное напряжение испытываемый двигатель. Если минимальный вращающий момент испытываемого двигателя меньше тормозного вращающего момента нагрузочной машины, то агрегат задержится на промежуточной частоте вращения, а если минимальный вращающий момент испытываемого двигателя выше тормозного, то агрегат достигает полной частоты вращения испытываемого двигателя.

Пуски испытываемого двигателя производят несколько раз при разных тормозных моментах на валу, значения которых регулируются подводимым к нагрузочной машине напряжением. При испытании следует определять наибольшее значение тормозного момента, при котором агрегат достигает полной частоты вращения испытываемого двигателя. Это значение принимают равным найденному значению минимального вращающего момента в процессе пуска испытываемого двигателя.

7.6Определение соответствия номинальных показателей двигателей требованиям стандартов

Номинальными показателями асинхронных двигателей, значения которых установлены в стандартах или технических условиях, являются: КПД h, коэффициент мощности cosj0 , максимальный момент Мм, а для двигателей с короткозамкнутым ротором, кроме того, начальный пусковой момент Мп и начальный пусковой ток Iп.

7.6.1Методы контроля номинальных показателей электродвигателей по результатам приемо-сдаточных испытаний

Зоны на параметры приемо-сдаточных испытаний ( I0 , Iк , Р0 и Рк), рассчитанные по номинальным показателям электродвигателей с учетом допусков на эти показатели, позволяют осуществить контроль номинальных показателей электродвигателей по результатам приемо-сдаточных испытаний.

С этой целью по результатам приемо-сдаточных испытаний необходимо нанести в координатах I0-Ik; P0-Pk; Ik-Pk точки соответствующие полученным значениям параметров приемо-сдаточных испытаний. Попадание точек внутрь всех допустимых зон свидетельствует о соответствии номинальных показателей испытанного двигателя требованиям технических условий с учетом допусков по ГОСТу. Если хоть одна точка выходит за пределы любой из зон, это свидетельствует о том, что по крайней мере по одному номинальному показателю электродвигатель не удовлетворяет предписанным требованиям.

По положению точек в зонах (в том случае, если они оказались внутри зон) можно также получить представление о величине номинальных показателей испытанного двигателя.

7.6.2Автоматизированная испытательно-диагностическая система для контроля за качеством электродвигателей с использованием ЭВМ

Для контроля, диагностирования и анализа изменения номинальных показателей асинхронного двигателя предлагается использовать автоматизированную испытательно-диагностическую систему с применением ЭВМ, блок-схема которой показана на рис.7.3.

Алгоритм контроля номинальных показателей асинхронных двигателей с короткозамкнутым ротором на данной блок-схеме представлен по значениям токов и потерь холостого хода и короткого замыкания (I0, P0, IК, PК).

Методика диагностирования причин отклонений токов и потерь холостого хода и короткого замыкания в процессе производства асинхронных двигателей сводится к определению направлений смещений точек в допустимых зонах.

Цифровое измерение в измерительной системе токов и потерь холостого хода и короткого замыкания осуществляется по особому алгоритму. Соответствующие каналы преобразования измерительной системы построены на аналоговых интегрирующих преобразователях переменного тока и мощности трехфазной цепи с унифицированными выходными сигналами постоянного тока (0-5 мА).

рис.7.3

Данная система функционирует совместно с испытательным конвейером, имеющим 7 основных позиций испытаний асинхронных двигателей. На первой позиции испытательного стенда контролируется обрыв фаз, а на второй - сопротивления изоляции обмоток относительно корпуса двигателя и между обмотками. На третьей и четвертой позициях осуществляются испытания межвитковой изоляции обмоток на электрическую прочность. На пятой позиции электродвигатели подвергаются испытаниям в режимах холостого хода и короткого замыкания. Шестая позиция предназначена для испытаний изоляции обмоток относительно корпуса и между обмотками на электрическую прочность, а седьмая - для вибрационных испытаний.

Во время испытаний от позиций 1-4, 6 и 7 через измерительную систему на входы блока сопротивления поступают бинарные сигналы. Если на соответствующей позиции электродвигатель не выдерживает испытания, то вырабатывается “0” (низкий потенциал), если выдерживает - сигнал “1”(высокий потенциал).

При испытаниях асинхронного двигателя по 5-ой позиции, то есть в режимах холостого хода и короткого замыкания, с помощью измерительной системы измеряются токи и потери.

Блок сопряжения системы осуществляет обмен измерительной и управляющей информацией между управляющим вычислительным устройством и внешними устройствами путем временного разделения каналов.

Отбраковка и диагностирование асинхронных двигателей осуществляются путем обработки результатов измерений параметров холостого хода и короткого замыкания испытуемых двигателей по алгоритму приведенному на рис.7.3.

Далее путем обработки результатов измерений параметров холостого хода и короткого замыкания годных асинхронных двигателей осуществляют их статический анализ.

Для каждого годного асинхронного двигателя оформляют протокол испытаний с указанием реквизитов двигателя.

Совершенствование алгоритма функционирования в программе ЭВМ направлено на обеспечение цифрового программного управления работой измерительного комплекса и на использование дополнительных процедур контрольно-измерительной, испытательной и диагностической работы для повышения достоверности и глубины контроля параметров и диагностирования асинхронных двигателей.



Экономическая часть

8Экономическая часть: техноко-экономическое обоснование внедрения системы управления расстойным шкафом

Необходимость внедрения системы управления расстойным шкафом обуславливается развитием технического прогресса в области хлебопечения, совершенствованием полупроводниковых и других устройств и материалов, используемых в конструкции приборов; требованиями обеспечения улучшения качества выпекаемых изделий, уменьшения процента брака, снижения трудоемкости и сложности операции расстойки тестовых заготовок.

8.1Определение потребностей народного хозяйства в данной технике

Разрабатываемая система управления предназначена для расстойного шкафа, входящего в состав минипекарни. Потребность народного хозяйства в данной технике велика, так как расстойный шкаф используется в хлебопекарной промышленности, а хлеб основной продукт питания в нашей стране и во многих других странах мира.

Потребность населения в хлебобулочных изделиях не уменьшается. Возрастает спрос на различные виды хлебобулочных изделий. Ассортимент продукции, выпускаемой минипекарнями, очень широкий. Многие пекарни выпускают продукцию по своим собственным рецептам, которыми не пользуются в других пекарнях. Ни один хлебозавод или минипекарня не может выпускать весь спектр изделий. Поэтому организуются новые минипекарни, в состав которых обязательно входят расстойные шкафы.

Требования к выпускаемой продукции очень высокие. Проектируемая система управления расстойным шкафом позволяет поддерживать оптимальные для расстойки тестовых заготовок условия в камере расстойного шкафа. Следовательно, улучшается качество выпекаемых изделий, уменьшается процент брака, снижается трудоемкость и сложность расстойки тестовых заготовок.

Поэтому существуют огромные перспективы развития потребностей в расстойных шкафах, а следовательно и в системах управления расстойными шкафами.

8.2Определение экономической эффективности проектируемой СУ расстойным шкафом

Экономическая эффективность отдельных видов новой техники определяется на основе общих единых принципов, которые включает Типовая методика; основной из них - принцип соизмерения эффекта и затрат.

Различают общую (абсолютную) и сравнительную экономическую эффективность проектируемого прибора. Сравнительная экономическая эффективность рассчитывается для выбора варианта решения технических задач; она показывает, насколько один вариант прибора экономичнее другого.

Абсолютная экономическая эффективность исчисляется для определения фактической эффективности капитальных вложений в проектируемый прибор в народном хозяйстве.

Критерием сравнительной экономической эффективности является минимум приведенных затрат (З). Приведенные затраты по каждому варианту представляют собой сумму текущих затрат (себестоимости) и капитальных вложений, приведенных к одинаковой размерности в соответствии с нормативом эффективности. Наиболее экономичен вариант новой техники, которому соответствуют наименьшие приведенные затраты при одинаковом объеме выполняемой полезной работы

З = С + Ен × К ® min,

С - себестоимость прибора;

C1 = 10000 руб. - себестоимость базовой СУ

C2 = 15000 руб. - себестоимость проектируемой СУ

К - удельные капитальные вложения в производственные фонды (определяются как нормированная величина),

K = 0,9 ´ C,

К1= 9000 руб.,

К2= 13500 руб.;

Eн - нормативный коэффициент эффективности капитальных вложений,

Ен = 0,17.

Имеем:

З1 = 10000 + 0,17´9000 = 11530 руб.,

З2 = 15000 + 0,17´13500 = 17295 руб.

Минимальная оптовая цена базовой и проектируемой СУ:

Цм = Снт ´ (1 + Рс ),

где Рс - коэффициент рентабельности изделия, отражающий отношение прибыли к себестоимости продукции (Рс = 0,13¸0,2 ),

Тогда:

Цм1 = 10000 ´ (1 + 0,15 ) = 11500 руб.;

Цм2 = 15000 ´ (1 + 0,15 ) = 17250 руб.



Расчет сравнительной экономической эффективности проведем по формуле:

где З1 2 - приведенные затраты на изготовление базового и проектируемого прибора;

В1, В2 - производительность (мощность) базового и проектируемого прибора;

В связи с уменьшением количества, брака вызванным применением проектируемой СУ, производительности базовой и проектируемой СУ соотносятся как:

В2 / В1 = 1,2

Р1 2 - доля амортизационных отчислений на реновацию (полное восстановление) базового и нового прибора;

где Тс - срок службы прибора;

Р1 = 1/2 = 0,5;

P2 = 1/10 = 0,1

ЭрБ’, ЭрН - эксплуатационные расходы по базовому устройству на сопоставимый объем работы (сопоставимую мощность) и новому прибору;

где Эрб - годовые эксплуатационные расходы по базовому прибору;

При расчете годовых эксплуатационных расходов учитываются только те издержки по эксплуатации, которые претерпевают изменения при сопоставлении со сравниваемым устройством:

Эр = А + Рт + Эн ,

где А - амортизация техники, исчисляемая исходя из ее срока службы (Тс):

А = Цм / Тс;

А1 = 11500 / 2 = 5750 руб.

А2 = 17250 / 10 =1725 руб.

Рт - расходы на текущий ремонт техники, исчисляемые по нормативу в проценте к ее стоимости:

Рт = Цм ´ Нр / 100,

где Нр - норматив расхода средств на ремонт в проценте к оптовой цене (3¸7%);

Рт1 = 11500 ´ 5 / 100 = 575 руб.

Рт2 = 17250 ´ 5 / 100 = 862,5 руб.

Эн - расходы на электроэнергию:

Эн = Мт ´ Тч ´ Сэ ,

где Мт - потребляемая мощность, кВт;

Тч - время работы техники за год, ч;

Сэ - стоимость одного кВт-ч энергии;

Сэ = 0,1 руб.

Тогда:

Эн1 = 7500 ´ 3,0 ´ 0,1 = 2250 руб.

Эн2 = 7500 ´ 2,5 ´ 0,1 = 1875 руб.

Откуда:

Эрн = Эр2 = 1725 + 862,5 + 1875 = 4462,5 руб.;

Эрб = Эр1 = 5750 + 575 + 2250 = 8575 руб. ,

следовательно:

ЭрБ’ = 8575 ´ 1,2 = 10290 руб.



К1, К2 - сопутствующие капитальные вложения для эксплуатации базового прибора на сопоставимый объем работы (сопоставимую мощность) нового прибора

Величины К1, К2 могут приниматься укрупненно

К1,2= 0,05 ´ 31,2;

Имеем:

К1 = 0,05 ´ 10000 = 500 руб.;

К2 = 0,05 ´ 15000 = 750 руб.;

Тогда: К’1 = 500 ´ 1,2 = 600 руб.

- среднегодовой выпуск нового прибора,

где N - потребность народного хозяйства в проектируемом приборе;

N = 20000 шт.

Тп- период производства.

Тп = 10 лет,

Откуда сравнительная экономическая эффективность проектируемой СУ составляет:

Расчет абсолютной экономической эффективности прибора производится с учетом показателя его экономической и технико-экономической прогрессивности.

Экономическая прогрессивность техники - экономичность ее эксплуатации - определяется по формуле

где Эрб, ЭрН - годовые эксплуатационные расходы по заменяемому базовому и проектируемому новому устройству,

Ету- техническая прогрессивность проектируемого прибора.

Техническая прогрессивность техники является предпосылкой ее экономической прогрессивности и определяется совокупностью параметров, отражающих в целом уровень ее качества, превосходящий уровень качества лучших образцов отечественной и зарубежной техники.

Уровень экономической эффективности проектируемого прибора определяется с учетом его технической прогрессивности по сравнению с существующими приборами, параметры которых известны.

Для определения Ету производится выбор его аналога (прототипа). В качестве прототипа выбирается техника, сходная по целевому назначению и отличающаяся от проектируемой конструктивными или схемными решениями.

При оценке уровня технической прогрессивности разрабатываемой СУ ее параметры сопоставляются с конструкциями аналогичных СУ, соответствующими проектируемому объекту по назначению и области применения.

Улучшение параметров проектируемой системы управления по сравнения с аналогом и их удельная значимость занесены в таблицу:

Таблица 8.1 - Сравнение проектируемой СУ с аналогом

№ п/п

Наименование параметров

Улучшение параметров по сравнению с аналогом A, раз

Значимость mj

1

Точность поддержания температуры

3

0.3

2

Точность поддержания влажности

1.5

0.4

3

Ресурс

5

0.1

4

Безопасность работы

2

0.2

Показатель технической прогрессивности проектируемого прибора:

,

где Aj- улучшение значения j-го параметра проектируемого прибора;

mj- значение значимости j-го параметра;

n - количество рассматриваемых параметров.

С учетом табличных значений показатель технической прогрессивности

Ету= 3´0.3 +1,5´0,4 + 5´0,1 +2´0,2 = 2,4

В связи с этим, для проектируемой СУ:

Уровень технико-экономической прогрессивности устройства (Еп) оценивается по формуле

Еп = Ету ´ Еээ,

Для проектируемой СУ имеем:

Еп = 2,4 ´ 1,784 = 4,282

Показатели технико-экономической прогрессивности проектируемой СУ используем для определения ее цены и эффективности в народном хозяйстве.

Экономический эффект от использования проектируемого прибора в зависимости от его характера и целевого назначения исчисляется в виде экономии от снижения эксплуатационных расходов по использованию прибора Эфэ, исчисляется по формуле:

Эфэ = Эрб ´Ету - ЭрН,

И, для проектируемой СУ:

Эфэ = 8575 ´ 2,4 - 4462,5 = 16117,5 руб.

Уровень хозрасчетной эффективности устройства:

где Цв - возможная цена проектируемой СУ;

Ен - нормативный коэффициент эффективности капитальных вложений, равный 0,15;

Цв = Цм + Эц.

Доля эффекта у потребителя, включаемая в цену проектируемого устройства, может быть рассчитана по формуле:

Откуда для проектируемой СУ:

Цв = 17250 + 7496,5 = 24746,5 руб.

И уровень хозрасчетной эффективности проектируемой СУ:

Так как при установлении оптовых цен необходимо предусматривать снижение их уровня на единицу полезного эффекта, то проверим это условие.

Для этого рассчитаем коэффициент относительной цены проектируемого устройства на единицу полезного эффекта:

где Рс - коэффициент рентабельности изделия, отражающий отношение прибыли к себестоимости продукции:

Рс= 0,13 ¸ 0,20.

При соблюдении указанного условия Ецо< 1.

Для нашей СУ:

То есть цена проектируемой СУ на единицу полезного эффекта в 2 раза меньше, чем у аналога.



Уровень народнохозяйственной эффективности проектируемого прибора определяют по формуле

где Узр - затраты на разработку устройства в расчете на единицу его серийного производства:

Узр = Зр / N,

Для проектируемой СУ:

Узр = 152677 / 20000 = 7,63;

и

Это значительно больше, чем нормативный коэффициент капитальных вложений, равный 0,17. Из этого делаем вывод, что разработка СУ расстойного шкафа была экономически целесообразна.







Охрана труда и окружающей среды

9Охрана труда и окружающей среды: обеспечение нормативного уровня освещенности на рабочих местах

Проектируемая система управления предназначена дла расстойного шкафа, входящего в состав минипекарни. Обеспечение нормативного уровня освещенности на рабочих местах является одним из факторов, определющих благоприятные условия труда.

Недостатачное освещение рабочих мест - одна из причин низкой производительности труда. В этом случае глаза работающего персонала сильно напряжены, трудно различают обрабатывающие предметы, у человека снижается темп и качество работы, ухудшается общее состояние.

На органах зрения отрицательно сказывается и чрезмерное освещение. Чрезмерная освещенность приводит к слепимости, при этом глаза работающего персонала быстро устают и зрительное восприятие ухудшается.

Рациональное освещение должно удовлетворять ряду требований: должно быть достаточным, чтобы глаза без напряжения могли различить рассматриваемые детали; постоянным по времени, для этого напряжение в питающей сети не должно колебаться больше чем на 4%; равномерно распределенным по рабочим поверхностям, чтобы глазу не приходилось испытывать резкого светевого контраста; не вызывать слепящего действия органов зрениячеловека как от самого источника света, так и от отражающих поверхностей, находящихся в поле зрения человека (уменьшение блесткости света достигаетсяприменением светильников, рассеивающих свет); не вызывать резких теней на рабочих местах, в проездах, проходах при правильном расположении светильников; быть безопасным - не вызывать взрыва, пожара в помещениях.

При правильно расчитанном и выполненом освещении производственных помещений глаза работающего персонала в течение продолжительного времени сохраняют способность хорошо различать предметы и орудия труда, не утомляясь.

На рабочих местах освещенность нормируется согласно СНиП 23-05-95 “Нормы проектирования. Естественное и искусственное освещение.”

Данный СНиП нормирует показатели освещенности в зависимости от разряда зрительных работ, который выбирается из Таблицы по отношению dmin/l, где

dmin - размер объекта различения, м;

l - расстояние от него до глаз работника, м.

Таблица 9.2

Определение разряда зрительных работ

Разряд

dmin/l

I

<0,3×10-3

II

0,3×10-3 ¸ 0,6×10-3

III

(0,6 ¸1)× 10-3

IV

(1 ¸ 2)× 10-3

V

(2 ¸ 10)× 10-3

VI

>10×10-3

Исходя из данных таблицы выбираем пятый разряд зрительных работ.

9.1Расчет естественного освещения

Естественное освещение имеет огромное гигиеническое значение, состоящее в сильном гигиеническом действии на организм человека.

Длительное отсутствие естественного света угнетающе действует на психику человека, способствует развитию чувства тревоги, снижает интенсивность обмена веществ в организме способствует развитию близорукости и утомляемости. Поэтому санитарные нормы предусматривают обязательное естественное освещение всех производственных, административных, подсобных и бытовых помещений.

С учетом многоэтажности производственных зданий, в нашем случае возможно только боковое естественное освещение.

Рассчитаем необходимую площадь световых проемов при боковом естественном освещении и при условии, что оператором осуществляется пятый разряд зрительных работ:

где Sп - площадь пола:

Sп = 16 ´ 20 = 320 м2;

кз - коэффициент запаса, учитывающий потеру освещенности из-за запыленности окон:

кз = 1,2;

е - коэффициент естественного освещения - для пятого разряда зрительных работ и бокового освещения:

е = 1%;

h0 - световая характеристика здания:

h0 = 10;

кзд = 1;

r0 - общий коэффициент светопропускания:

r0 = 0,6;

r1 - коэффициент увеличения освещенности за счет отражения света от пола:

r1 = 1,2.

Таким образом, площадь световых проемов

Площадь стен:

Sст = (16 + 20) ´ 2 ´ 3,5 = 252 м2;

Найдем процентное отношение площади окон и площади стен:

(53,3/252) * 100% = 21,15%.

9.2Расчет искусственного освещения

В связи с тем, что естественного освещения недостаточно и с учетом груглосуточного графика работы пекарни, необходимо применять общее искусственное освещение. Для этого освещения используются многоламповые светильники типа ЛСП с люминесцентными лампами ЛБ-40, ЛБ-60 и ЛБ-80.

СНиП 23-05-95 устанавливает норму освещенности в цехе 300 Лк для общего освещения и работах малой точности. Данная норма в цехе выдерживается для пятого разряда подразряда зрительных работ.

Произведем расчет количества ламп, обеспечивающих требуемую освещенность помещения:

где E - минимальная освещенность по норме:

E = 300 Лк;

k - коэффициент запаса лампы, необходимый для компенсации потерь освещения из-за ее запыленности:

k = 1,5;

Z - отношение средней и минимальной освещенности:

Z = 1,1;

F - световой поток одной лампы:

F = g ´ Pл,

где g - светоотдача лампы:

для люминесцентных ламп: g = 45 лм/Вт;

Pл - мощность лампы:

Выбираем люминесцентные лампы

ЛБ-60 мощностью Pл = 60 Вт;

Тогда световой поток лампы:

F = 45 ´ 60 = 2700 лм

h - коэффициент использования светового потока:

h = 0,59 º 59%;

Sп - площадь помещения:

Sп = 16 ´ 20 = 320 м2.

В итоге

.

Выбираем светильники с люминесцентными лампами ЛСП02‑2*90. В каждом таком светильнике размещается по 2 лампы типа ЛБ-60, т.е. всего необходимо

Nсв = N / 2 =102 / 2 = 51 Светильник

Выбираные светильники ЛСП02‑2*90 с лампами ЛБ-60 обеспечивают необходимую освещенность в производственном помещении цеха.

В производственном помещении предусмотрено также аварийное освещение, обеспечивающее безопасную эвакуацию людей в случае пожара. Включение аварийного освещения происходит автоматически при аварийном отключении общего освещения.

Итак, рационально устроенное освещение создает достаточную равномерную освещенность производственного помещения, сохраняет зрение рабочего персонала, уменьшает травматизм, позволяет повышать производительность труда, влияет на уменьшение процента брака и улучшение качества выпекаемых изделий.





Заключение

10Заключение

В настоящем дипломном проекте, посвященном проектированию системы управления расстойным шкафом, были рассмотрены следующие вопросы:

  • описание процесса расстойки тестовых заготовок и требования к системе управления;

  • разработка полной математической модели процессов в расстойном шкафу;

  • разработка и идентификация упрощенной математической модели процессов в расстойном шкафу;

  • выбор элементов и конструкции системы управления;

  • расчет параметров системы управления, обеспечивающих заданный режим;

  • автоматизация и технология типовых приемочных и периодических испытаний асинхронных двигателей 0,5 ¸ 5 кВт (в технологической части);

  • технико-экономическое обоснование внедрения системы управления расстойным шкафом (в экономической части);

  • обеспечение нормативного уровня освещенности на рабочих местах (в разделе охраны труда и окружающей среды).

Резюмируя описание выполненного проекта, по его содержанию можно сделать следующие выводы:

  • спроектированная система управления позволяет полностью использовать внутренние ресурсы перерабатываемого сырья, улучшить качество выпекаемых изделий, уменьшить процент брака и снизить трудоемкость операции расстойки тестовых заготовок;

  • разработанная полная математическая модель процессов в расстойном шкафу позволяет лучше разобраться в принципах работы расстойного шкафа;

  • разработанная упрощенная математическая модель процессов в расстойном шкафу позволила по выведенной системе дифференциальных уравнеий написать программу для расчета параметров работы расстойного шкафа и его системы управления, которая может быть использована для моделирования работы расстойного шкафа и проектируемой системы управления на ЭВМ. Путем идентификации с работающим образцом была выявлена большая степень сходства расчетных значений с экспериментальными данными, что говорит о правильности выбранных допущений и упрощений, сделанных в процессе разработки данной модели;

  • путем расчетов на ЭВМ были выбраны параметры системы управления, обеспечивающие заданный режим работы расстойного шкафа;

  • была выбрана рациональная и надежная конструкция системы управления расстойным шкафом;

  • автоматизация типовых приемочных и периодических испытаний асинхронных двигателей, используемых в конструкции системы управления расстойным шкафом, способствует улучшению качества, уменьшению трудоемкости и увеличению скорости данных испытаний;

  • в экономической части дано технико-экономическое обоснование внедрения системы управления расстойным шкафом и определена ее экономическая эффективность;

  • мероприятия по охране труда обеспечат безопасность работы обслуживающего персонала расстойного шкафа.

Таким образом, все поставленные в задании по подготовке дипломного проекта вопросы успешно решены, а спроектированная система управления расстойным шкафом соответствует требованиям, изложенным в исходных данных к проекту.



11Приложения

11.1Приложение 1: программа для расчета термодинамических процессов и для исследования работы СУ расстойного шкафа

program Diplom_S; {Расчет термодинамических процессов в расстойном шкафу}

Const

t_tenz = 650; {Максимально допустимая температура ТЭНов}

p_tenz = 2500; {Мощность ТЭНов}

q_test_vid = 150; {Энергия, выделяемая в тесте}

dttz = 0.5; {Допуск на отклонение температуры от заданной}

VAR

t_z,t_v,t_ten,t_test,t_tel,t_os,dtt,dtt0 : real;

t,dt,tk : real;

k_v,k_ten,k_test,k_tel,k_st : real;

c_v,c_test,c_tel,c_ten : real;

m_v,m_test,m_tel,m_ten : real;

q_v,q_ten,q_test,q_tel,q_st,p_ten : real;

dt_test,dt_tel,dt_v,dt_ten : real;

outf : text;

procedure diff (var x:real; dx:real; dt:real); {Процедура интегрирвания}

begin

x := x + dx * dt;

end;

BEGIN

assign (outf, 'ds1.out');

Rewrite (outf);

t_z := 40; {Заданная температура ТЭНов}

t_v := 20; {Начальная температура воздуха в шкафу}

t_test := 25; {Начальная температура тестовых заготовок}

t_tel := 20; {Начальная температура тележек}

t_ten := 20; {Начальная температура ТЭНов}

t_os := 20; {Температура воздуха окружающей среды}

dtt := t_z - t_v; {Начальный сигнал рассогласования}

t := 0; {Время начала процесса}

dt := 1; {Шаг интегрирования}

tk := 3660; {Продолжительность расстойки}

k_ten := 86.7*Pi*0.008*2; {Коэффициент ТЭНов}

k_test := 24.8 * 9; {Коэффициент теста}

k_tel := 6 * 11.5; {Коэффициент тележек}

k_st := 1.87 * 11.77; {Коэффициент стенок}

c_v := 1079; {Теплоемкость воздуха}

c_test := 3000; {Теплоемкость теста}

c_tel := 500; {Теплоемкость тележек}

c_ten := 470; {Теплоемкость ТЭНов}

m_v := 1.11*2.5; {Масса воздуха}

m_test := 0.46*180; {Масса теста}

m_tel := 75; {Масса тележек}

m_ten := (7100*2*Pi*sqr(0.008))/4; {Масса ТЭНов}

while t <= tk do begin {Начало расчета}

q_ten := k_ten * (t_ten - t_v); {Выделяемая ТЭНами энергия}

q_test := k_test * (t_v - t_test); {Потребляемая тестом энергия}

q_tel := k_tel * (t_v - t_tel); {Потребляемая тележками энергия}

q_st := k_st * (t_v - t_os); {Расход энергии через стенки}

q_v := q_ten - q_test - q_tel - q_st; {Тепловой баланс}

dt_ten := (p_ten-q_ten)/(c_ten*m_ten); {Скорость изменения температуры ТЭНов}

dt_test:= (q_test+q_test_vid)/(c_test*m_test);{Скорость изменения температуры теста}

dt_tel := q_tel/(c_tel*m_tel); {Скорость изменения температуры тележек}

dt_v := q_v / (c_v * m_v); {Скорость изменения температуры воздуха}

if Frac(t/10) = 0 then

writeln(t:2:0,' ',t_v:10:10,' ',dt_v:10:10); {Вывод результатов}

writeln(outf, t:2:0,' ',t_v:10:10,' ',dt_v:10:10,' ',t_test:10:10);

dtt0 := dtt; {Сигнал рассогласования в предыдущий момент времени}

dtt := t_z - t_v; {Сигнал рассогласования}

if ((dtt >= dttz) OR ((dtt > -dttz) AND (dtt0 > dtt))) AND (t_ten < t_tenz) then

p_ten := p_tenz

else p_ten := 0; {Включение/выключение ТЭНов}

diff(t_ten,dt_ten,dt); {Нахождение температуры ТЭНов}

diff(t_test,dt_test,dt); {Нахождение температуры теста}

diff(t_tel,dt_tel,dt); {Нахождение температуры тележек}

diff(t_v,dt_v,dt); {Нахождение температуры воздуха}

t := t + dt; {Инкремент времени}

end; {Конец расчета}

close (outf);

END.

11.2Приложение 2: спецификация к сборочному чертежу









12Список используемой литературы

  1. Алешина О.Н. Конспект лекций по курсу “Экономика производства и организация планирования.”

  2. Афонина О.А., Иванов С.П. Методические указания по выполнению раздела “Охрана труда” в дипломных работах.

  3. Ауэрман Л.Я. Технология хлебопекарного производства.

  4. Бормотова В.А. Методические указания по выполнению организационно-экономической части дипломных проектов.

  5. Буриченко А.А. Охрана труда в гражданской авиации.

  6. Воронина А.А., Шибенко Н.Ф. Безопасность труда в электроустановках.

  7. Вулакович М.П., Ривкин С.Л., Александров А.А. Таблицы теплофизических свойств воды и водяного пара.

  8. Гольдберг О.Д. Испытания электрических машин.

  9. Кавецкий Г.Д., Васильев Б.В. Процессы и аппараты пищевой технологии.

  10. Камладзе О.Г. Конспект лекций по курсу “АПР.”

  11. Калинушкин М.П. Вентиляторные установки.

  12. Кораблев В.П. Электробезопасность.

  13. Крылов В.А., Яров В.Н. Методические указания к дипломному проектированию по курсу “Охрана труда”.

  14. Нащокин В.В. Техническая термодинамика и теплопередача.

  15. Поляков Д.Б., Круглов И.Ю. Программирование в среде Турбо Паскаль.

  16. Справочник по элементарной физике. Под ред. Д.И.Сахарова.

  17. Свенчанский А.Д. Электрические промышленные печи

  18. Судзиловский Н.Б. Конспект лекций по курсу “Теория следящих систем.”

  19. Теплотехника. Под ред. А.П. Баскакова

  20. Теплоэнергетика и теплотехника. Под ред. В.А. Григорьева и В.М. Зорина

  21. Черных В.Я., Салапин М.Б. Применение микро-ЭВМ для контроля и управления технологическими процессами производства пшеничного хлеба.

  22. Яров В.Н., Малько Л.И. Методические указания к дипломному проекту “Защита от шума и вибраций”.



Характеристики

Тип файла
Документ
Размер
330 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее