D_L (729432), страница 5
Текст из файла (страница 5)
Система управления обеспечивает безопасность работы расстойного шкафа. Для предотвращения последствий коротких замыканий электрические цепи питания снабжены автоматическими отключателями и предохранителями. Для предотвращения поражения обслуживающего персонала пекарни электротоком выполнено защитное зануление. Для предотвращения перегрева ТЭНов поддержания температуры предусмотрен датчик допустимой температуры данных ТЭНов, а для предотвращения перегрева ТЭНов поддержания влажности предусмотрен датчик контроля минимально допустимого уровня воды в блоке подогрева и увлажнения. При любой неисправности система управления отключает все работающие устройства и подает сигнал путем зажигания на панели управления лампы неисправности.
6Расчет параметров СУ, обеспечивающих заданный режим
6.1Выбор мощности ТЭНов
Мощность ТЭНов в системе управления расстойным шкафом должна удовлетворять следующим условиям:
-
Должен быть обеспечен быстрый выход в установившийся режим работы расстойного шкафа;
-
Периодичность циклов включения-выключения ТЭНов не должна быть очень высокой и слишком низкой;
-
Допустимая температура нагрева ТЭНов не должна превышаться.
Путем перебора нескольких значений мощности ТЭНов поддержания температуры воздуха в камере расстойного шкафа и последующего расчета переходного процесса с помощью программы (см. Приложение 1) было выяснено, что оптимальной для данного объема камеры расстойного шкафа и заданного допуска на отклонение поддерживаемой температуры является мощность ТЭНов, равная
Pтэн =2500 Вт.
При такой мощности ТЭНов поддержания температуры воздуха процесс выхода в установившееся состояние занимает примерно 20 минут, периодичность циклов включения‑выключения составляет около 1,5 минуты, а перегрев ТЭНов выше максимально допустимой температуры не происходит.
Выбор мощности ТЭНов поддержания влажности воздуха в камере расстойного шкафа произведем из условия, что нагрев испаряемой воды с температуры начала расстойки до температуры кипения должен происходить не более чем за 5¸10 мин с начала процедуры расстойки:
Tтэн вл = cводы ´ mводы ´ (100 - T1)/t,
где cводы - теплоемкость воды:
cводы = 4200 Дж/(кг´гр);
mводы - масса воды в блоке увлажнения и подогрева:
mводы = 6 кг;
T1 - температура воды в начале расстойки:
T1 = 20°С.
Тогда:
Tтэн вл = 4200 ´ 6 ´ (100 - 20)/ 540 = 3733 Вт.
Выбираем Tтэн вл = 4000 Вт.
6.2Выбор допуска на отклонение температуры
При моделировании процессов в расстойном шкафу было выяснено, что необходимо выбирать допуск на отклонение поддерживаемой температуры от заданной, по границам которого система управления включает и выключает ТЭНы, меньше чем данный в задании. Это связано с тем, что при поддержании температуры в камере расстойного шкафа присутствуют большие запаздывания, вызванные характером моделируемого объекта. По результатам моделирования с различными допусками на отклонение температуры стало ясно, что оптимальным для данного случая является допуск на отклонение поддерживаемой температуры в 2 раза более строгий, чем данный в задании. Такой допуск обеспечивает невыход температуры за допустимые пределы и, в то же время, не делает слишком коротким цикл включения-выключения ТЭНов, что положительно сказывается на их ресурсе и ресурсе включающих их реле.
6.3Расчет циркуляционного вентилятора
Подбор циркуляционного вентилятора осуществляется по его объемной производительности (Vцир) и напору (Нцир).
Объемная производительность расчитывается по формуле:
Vцир = uвозд ´ fшк / 2 ,
где uвозд - скорость движения воздуха в камере расстойного шкафа:
uвозд =0,4 м/c
fшк - площадь живого сечения камеры расстойного шкафа:
fшк = 1,26 м2,
тогда
Vцир = 0,4 ´ 1,26 / 2 = 0,252 м3/c.
Напор определяется путем аэродинамического расчета газового тракта циркулирующей среды по формуле:
Нцир = 1,2 ´ å DP,
где DP - основные местные сопротивления:
DP = x ´ uвозд2 ´ rвозд,
где x - коэффициент местного сопротивления;
r - плотность циркулирующего воздуха.
Расчет местных сопротивлений приведен в таблице 6.1
Таблица 6.1
Расчет местных сопротивлений
| Номер участка | rвозд, кг/м3 | uвозд, м/с | x | DP, Па |
| 1 | 1.11 | 12 | 0.5 | 79.92 |
| 2 | 1.11 | 12 | 2.5 | 399.6 |
| 3 | 1.11 | 5 | 0.25 | 6.94 |
| 4 | 1.08 | 5 | 1.15 | 31.05 |
| 5 | 1.08 | 24 | 0.42 | 261.27 |
| 6 | 1.08 | 36 | 0.47 | 657.85 |
| 7 | 1.08 | 36 | 1.15 | 1609.63 |
| 8 | 1.08 | 36 | 1 | 1399.68 |
| 9 | 1.11 | 0.4 | 2.3 | 0.41 |
| Итого: | 4446 |
Откуда:
Нцир = 1,2 ´ 4446 = 5335 Па.
Этот напор при объемной производительности
Vцир = 0,252 м3/c
может обеспечить центробежный вентилятор с приводным мотором мощностью:
Nэл = Vцир ´ Нцир / hцир ,
где hцир - КПД приводного двигателя циркуляционного вентилятора: hцир = 0,75.
Тогда: Nэл = 0,252 ´ 5335 / 0,75 @ 1800 Вт.
Технологическая часть
7Технологическая часть: автоматизация процесса испытаний асинхронных двигателей 0,5¸5,5 кВт
При серийном и массовом производстве естественно стремление максимально автоматизировать производственный процесс, который включает в себя и этап испытания электрических машин. Исследования показали, что трудоемкость контрольных операций составляет до 13% трудоемкости изготовления электродвигателей. Средние нормы времени на проведение приемо-сдаточных одной электрической машины средней мощности составляет 3 ... 35 ч (для различных типов машин). На проведение приемочных испытаний одной электрической машины требуется 48 ... 250 ч. Средние нормы времени на обработку результатов приемо-сдаточных испытаний одной машины составляют 0,6 ... 4 ч, а на обработку приемочных испытаний - 40 ... 90 ч. Естественно, что столь высокая трудоемкость проведения испытаний и обработки их результатов заставляет искать пути автоматизации испытаний и использования ЭВМ.
Автоматизация испытаний электрических машин позволяет получить объективные и достоверные результаты испытаний, ускорить проведение контрольных измерений и повысить производительность труда. ЭВМ используются не только для обработки результатов испытаний, но и при управлении процессом испытаний, статистическом контроле и анализе результатов испытаний (не только при выборочном, но и при сплошном контроле). Из всех видов электрических машин наибольший объем выпуска имеют асинхронные низковольтные двигатели. Поэтому в первую очередь был автоматизирован процесс испытаний асинхронных двигателей.
7.1Автоматизированная установка для типовых, приемочных и периодических испытаний асинхронных двигателей
В данном дипломном проекте для испытания асинхронного двигателя применяется автоматизированная установка с использованием ЭВМ, блок-схема которой, показана на чертеже.
На установке автоматизированные испытания электродвигателя проводятся по следующей программе: измерение сопротивления обмоток; снятие характеристики короткого замыкания, механической и рабочей характеристики холостого хода.
Испытуемый двигатель закрепляют на нагрузочной установке, предназначенной для совмещения вала двигателя с осью маховых масс, создающих динамическую нагрузку. Вал двигателя соединяется с валом датчика частоты вращения.
Снятие механических и рабочих характеристик производят в процессе разгона электродвигателя. При этом сопротивление обмоток соответствует установившейся температуре, полученной при испытании на нагревание. Эта температура достигается автоматически в режиме короткого замыкания. Для проведения опыта холостого хода электродвигатель отсоединяют от маховых масс.
Электронно-вычислительная машина в соответствии с записанной программой осуществляет управление испытательным процессом, переводит испытуемый электродвигатель в различные испытательные режимы, коммутирует измерители, принимает информацию от измерителей электрических и неэлектрических величин, осуществляет необходимые вычисления и выдает обработанную информацию на печать. Измеритель электрических величин посылает через соответствующие блоки ЭВМ мгновенные значения измеряемых величин через равные промежутки времени с большой частотой. В ЭВМ эти данные обрабатываются и выдаются на печатающее устройство или графопостроитель. Для построения кривых используются действующие значения измеренных электрических величин.
Процесс автоматизации испытаний проводится в два этапа. Цель первого этапа - повышение точности определения характеристик электродвигателей и сокращение малопроизводительного труда. На этом этапе проводят испытания электродвигателей на нагревание и определяют сопротивления обмоток при постоянном токе и в холодном состоянии, характеристики холостого хода, рабочие, короткого замыкания и механическую, а также вероятность безотказной работы.
На втором этапе операции снятия показаний приборов заменены обработкой информации на мини-ЭВМ.
7.2Программа испытаний
Для асинхронных двигателей ГОСТ 183-74 предписывает программу приемочных испытаний, определяющую:
-
измерения сопротивления изоляции обмоток по отношению к корпусу машины и между обмотками и сопротивлений обмоток при постоянном токе в практически холодном состоянии;
-
определение коэффициента трансформации(для двигателя с фазным ротором);
-
испытания изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками и на электрическую прочность межвитковой изоляции обмоток статора и фазного ротора;
-
определение тока и потерь холостого хода;
-
определение тока и потерь короткого замыкания;
-
испытания машины при повышенной частоте вращения и на нагревание;
-
определение КПД, коэффициента мощности и скольжения ;
-
испытание на кратковременную перегрузку по току;
-
определение максимального вращающего момента, минимального вращающего момента в процессе пуска, начального пускового вращающего момента и начального пускового тока (для двигателей с короткозамкнутым ротором);
-
измерения вибраций и уровня шума.
7.3Определение коэффициента трансформации, тока и потерь холостого хода и короткого замыкания
7.3.1Определение коэффициента трансформации
Коэффициент трансформации находят, используя измерения линейных напряжений на зажимах обмоток статора и на кольцах неподвижного ротора с разомкнутой обмоткой. Для низковольтных электродвигателей (с номинальным напряжением до 660 В включительно) к обмотке статора подводят номинальное линейное напряжение. Коэффициент трансформации определяют как отношение фазных напряжений статора Uф1 и ротора Uф2:
kT=Uф1/Uф2.
7.3.2Определение потерь холостого хода
Эти испытания производят в режиме холостого хода при установившемся тепловом состоянии частей электродвигателя. Если невозможно установить установившееся тепловое состояние подшипников непосредственным измерением их температуры, то этого достигают путем вращения электродвигателей без нагрузки при номинальной частоте вращения. После окончания обкатки добиваются постоянства потребляемой мощности.
При опыте холостого хода измеряют линейное напряжение U0л между всеми фазами, частоту сети, линейный ток I0л статора в каждой фазе и потребляемую мощность.
Опыт холостого хода начинают с напряжения, равного 130 % от номинального. В процессе опыта обычно производят 9-11 измерений при различных значениях линейного напряжения. Для правильного определения потерь в обмотке статора при опыте холостого хода необходимо непосредственно после опыта измерить сопротивление обмотки статора.
Коэффициент мощности холостого хода вычисляется как:















