tymkul (729084)

Файл №729084 tymkul (Методика моделирования тепловизионных изображений)tymkul (729084)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Методика моделирования

тепловизионных изображений.

В теории и практике проектирования тепловизионных оптико-электронных систем немаловажную роль играет моделирование тепловизионных изображений. Яркость тепловизионных изображений зависит как от распределения температуры по поверхности наблюдаемого объекта, так и от коэффициента излучения и ориентации визируемых элементов его поверхности - его формы. Кроме того, качество тепловизионного изображения зависит от передаточных характеристик оптической системы и всех звеньев тепловизора.

В основу теории моделирования тепловизионных изображений заложен процесс формирования видеосигналов, пропорционально потоку теплового излучения объекта для всего тепловизионного кадра, в котором содержится L строк и N элементов в строке. Величина видеосигнала U( N, L ) элемента разложения кадра описывается выражением:

U ( N, L ) = ( 1/ cosN,L)dS(N,L)SW(,T,y,z)a(d( 1 );

где - передний апертурный угол оптической системы тепловизора;

- угол между нормалью к элементу dS( N,L ) поверхности объекта и направлением наблюдения;

W(,T,y,z) - спектральная светимость элемента dS(N,L) поверхности объекта, имеющего абсолютную температуру T;

- индикатриса спектрального коэффициента излучения поверхности объекта;

S - абсолютная спектральная чувствительность приёмника излучения тепловизора;

,- границы спектральной чувствительности приемника излучения;

,a- спектральный коэффициент пропускания оптической системы и слоя атмосферы;

y,z - координаты элемента dS(N,L) поверхности объекта в пространстве предметов [ 2 ] .

Для анализа влияния на качество изображения передаточных характеристик оптической системы тепловизора, приёмника излучения, электронного блока обработки информации и видеоконтрольного устройства (ВКУ) используется распределение освещённости E(y’, z’), которое определяется по формуле:

jy’+z’

E(y’, z’)=’L(,h0(,hп,hэ,hв,e dd2

-00

где ’ - задний апертурный угол оптической системы тепловизора с интегральным коэффициентом пропускания ;

h0(,,hп,,hэ,,hв,- модуль передаточной характеристики соответственно оптической системы, приёмника излучения, электронного блока обработки информации и ВКУ тепловизора;

y’, z’ - координаты элемента dS поверхности объекта в пространстве изображений;

L(, - пространственно-частотный спектр яркости поверхности объекта;

(, - пространственные частоты, приведённые к плоскости изображений.

Тепловизионные методы в настоящее время широко используются в задачах распознавания и идентификации объектов. Но следует отметить, что пользуясь только обычными тепловизионными изображениями, величина видеосигналов в которых определяется выражением ( 1 ), распознать объекты внутри их контура практически невозможно. В чём причина потери информации о форме объекта внутри контура в обычных тепловизионных изображениях? Чтобы это выяснить рассмотрим рис.1. Согласно этому рисунку, справедливо равенство:

dS1  cos 1 = dS 2  cos 2 = dS3  cos 3 ( 3 )

Анализируя рис.1 и эту связь, можно сделать вывод, что именно здесь и происходит потеря информации о форме объекта внутри контура. Сопряжённость всех элементов dS’ и dS, соответственно, приводит к тому, что площадки, расположенные под меньшими углами(0, cos1), должны иметь меньшие размеры dS, чтобы равняться тем площадкам, которые расположены под большими углами(900, cos0).

В связи с этим становится ясной необходимость использования таких информационных оптических характеристик теплового излучения объектов, которые исключали бы пропорциональную связь параметров dS и cos. К таким величинам относятся поляризационные свойства теплового излучения поверхности объектов. По этой причине и представляют интерес задачи моделирования и обработки поляризационных тепловизионных изображений.

2.Теория и методы моделирования поляризационных

тепловизионных изображений объектов.

2.1.Теория моделирования поляризационных тепловизионных

изображений на основе вектор-параметра Стокса теплового

излучения.

Для подробного описания теории моделирования поляризационных тепловизионных изображений рассмотрим объект произвольной формы, который в декартовой системе координат описывается уравнением:

f(x,y,z) = 0.

Допустим, что этот объект ( рис.2 ) наблюдается из точки Н, где расположен чувствительный элемент тепловизионной системы. Выбираем на поверхности этого объекта элемент dS, который соответствует одному элементу разложения кадра. Наклон площадки dS по отношению к элементу приёмника определяется

углом  между нормалью и направлением наблюдения rн. Тогда векторы n и rн определяют плоскость наблюдения. Коэффициент излучения рассматриваемого объекта имеет две составляющие: параллельную , которая лежит в плоскости наблюдения ( n*rн ), и перпендикулярную  , которая перпендикулярна плоскости наблюдения. Положение элемента dS определяется в декартовой системе координат радиус-вектором R , а в сферической системе координат углами  и .

Один из методов анализа поляризации пучка света - это метод вектор-параметра Стокса [ 3 ], характеризующий все виды и формы поляризации излучения поверхности объекта, который для нашего случая собственного излучения элементов dS(N, L) имеет вид:

 U0 ( N, L) + U90 ( N, L) 

Ui( N, L ) =  U0 ( N, L) - U90 ( N, L) , ( 4 )

 U45 ( N, L) - U135 ( N, L) 

 0

где i = 1, 2, 3, 4;

U0, U45, U90, U135 - величины сигналов, поляризованные, соответственно, под углами 00, 450, 900, 1350 относительно плоскости референции ( плоскости отсчёта ).

Степень поляризации теплового изображения зависит от величины видеосигналов поляризационных составляющих тепловизионных изображений элементов поверхности объекта с азимута поляризации соответственно равны 00, 450, 900, 1350. Величины видеосигналов U0, U90 в соответствии с тем, что коэффициент излучения можно представить в виде параллельной и перпендикулярной составляющих, запишем в виде:

U0 (N, L) = A (N, L)  (n * j)2 + j)2 ], ( 5 )

U90 (N, L) = A (N, L)  (n * k)2 + k)2 ]. ( 6 )

где 2

A ( N, L ) = ( 1/ cosN,L)dS(N,L)SW(,T,y,z)a(d

1

Тогда, например, зависимость степени поляризации теплового изображения, с азимутом tn=0, от величины видеосигналов двух поляризационных тепловизионных изображений элементов поверхности объекта, с азимутами поляризации 00, 900, можно представить в виде:

P’ (N, L) = [ U0 (N, L) - U90(N, L)] / [U0 (N, L)+U90(N, L)], ( 7 )

где

P’ (N, L) - степень поляризации изображений с азимутом tn=0.

Если пронумеровать вектор-параметр Стокса, то формула (4) примет вид:

 1 

U1(N, L) = U(N, L)  P(N, L) cos2t(N, L) ( 8 )

 P(N, L) sin2t(N, L) 

 0 

где P(N, L) - степень поляризации излучения элемента dS(N, L) объекта;

t(N, L) - азимут поляризации излучения элемента dS(N, L).

На основе выражений (7) и (8) получим:

P’(N, L) = P(N, L) cos2 t(N, L). ( 9 )

Подставив формулы (5) и (6) в выражение (7), получим следующее выражение для степени поляризации P’(N, L):

[(n*j)2 - (n*k)2] +[(*j)2 - (*k)2]

P’(N, L) = ------------------------------------------------------------------ , ( 10 )

[(n*j)2 + (n*k)2] +[(*j)2 + (*k)2]

где j , k - единичные орты координатных осей OY и OZ;

,- единичные векторы, соответственно, параллельной и перпендикулярной компонент коэффициента излучения элемента dS.

Преобразуем выражение (10) в виде:

][(n*j)2 - (n*k)2] +[(*j)2 - (*k)2]

P’(N, L) = ------------------------------------------------------------------ , ( 11 )

][(n*j)2 + (n*k)2] +[(*j)2 + (*k)2]

Принимая во внимание выражение:

P() =[] / [] ,

получим связь величин и  со степенью поляризации P():

= [1+ P()] / [1- P()]. ( 12 )

Анализируя данные исследований степени поляризации различных материалов, индикатрису P() можно представить в виде зависимости:

P() = a (1- cos

где а - параметр, зависящий от типа и шероховатости материала.

Принимая во внимание, что косинус угла  между нормалью к элементу dS и единичным вектором наблюдения rн определяется как скалярное произведение этих векторов, получим:

P() = [ 1-(n*rн) ]  a . ( 13 )

Подставив это выражение в формулу (12) получим:

1+ [ 1 (n*rн)] a

--------- = ------------------------- . ( 14 )

1 - [ 1 (n*rн)] a

Тогда, с учётом соотношения (12), из формулы (11) получим основное уравнение, выражающее зависимость между степенью поляризации P’(N, L) и формой объекта через функцию распределения нормали n для каждого элемента поверхности объекта:

1+ [ 1 (n*rн)] a

------------------------ [(n*j)2 - (n*k)2] +[(*j)2 - (*k)2]

1 [ 1 (n*rн)] a

P’(N, L) = ---------------------------------------------------------------------- . ( 15 )

1+ [ 1 (n*rн)] a

------------------------- [(n*j)2 - (n*k)2] +[(*j)2 + (*k)2]

1 [1 (n*rн)] a

С помощью этой формулы можно определить степень поляризации всех элементов наблюдаемой тепловизором части поверхности объекта любой формы. Для этого нужно знать направление нормали n для каждого элемента поверхности в зависимости от его положения в декартовой системе координат. Оно определяется как оператор Гамильтона ( набла-оператор ) от функции f(x,y,z) = 0, описывающий форму объекта:

[( df/dx )  i + ( df/dy )  j + ( df/dz ) k ]

n = ---------------------------------------------------- . ( 16 )

[( df/dx )2 + ( df/dy )2 + ( df/dz )2] 1/2

Единичный вектор наблюдения rн определяется как разница векторов l и R по формуле:

rн = ( l - R ) / | ( l - R ) |,

Характеристики

Тип файла
Документ
Размер
153,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее