145806 (728759), страница 6
Текст из файла (страница 6)
Суммарный расход воды на устанавливаемые турбоагрегаты рассчитывается по летнему режиму работы при условии обеспечения номинальной электрической мощности и покрытия летних тепловых нагрузок, так как в летний период пропуск пара в конденсатор наибольший и температура охлаждающей воды наивысшая.
Для электростанций с турбинами “ПТ” расход охлаждающей воды принимается по среднему летнему режиму отборов пара на производство, но не ниже 60 % от расхода воды при конденсационном режиме.
Расход технической воды для турбины “ПТ” определяется из выражения:
где
= 8000 м
/ч – расчетный расход охлаждающей воды при конденсационном режиме турбоагрегата типа ПТ-80-130 по техническим данным завода-изготовителя.
= (0,025 – 0,04) .
(т/ч) (4.1.2)
= (0,012 – 0,025).
(т/ч) (4.1.3)
= (0,003 – 0,008).
(т/ч) (4.1.4)
= 8000 + 240 + 160 + 40 = 8440 (т/ч)
4.2 Выбор циркуляционных насосов
При оборотном техническом водоснабжении общее количество воды, состоящее из расхода циркулирующего в замкнутом контуре и расхода на другие нужды станции, может быть подчитано по формуле для прямоточного водоснабжения.
В системе с оборотным водоснабжением напор циркуляционного насоса определяется с учетом потребного свободного напора воды перед брызгальными соплами.
Напор циркуляционных насосов:
где
= 3-4 м.вод.ст. – геодезическая высота подачи воды от уровня воды в приемном колодце до верхнего сопла;
= 4-6 м.вод.ст. – сумма гидравлических сопротивлении водоводов;
= 4-5 м.вод.ст. – свободный напор перед брызгальными соплами.
При проектировании неблочных электростанции установку циркуляционных насосов следует предусматривать в центральных насосных станциях или в главном корпусе.
Тип насосов выбирается по необходимому напору и производительности, определяемой полным расходом воды на техническое водоснабжение.
Выбирается один насос ОПВ-2-87, с основными техническими характеристиками: подача – 7560-13332 м
/ч, напор – 13,3-9 м, допустимый кавитационный запас – 12-10,7 м.вод.ст., частота вращения – 585 об/мин, мощность двигателя – 262-510 кВт, КПД – 65 %.
4.3 Выбор насосов добавочной воды
Расход воды на восполнение безвозвратной убыли складывается из потерь на испарение в охладителях циркуляционной воды, расхода на водоподготовку, и на охлаждение подшипников.
Расход воды на восполнение безвозвратной убыли:
где
- потери на испарение. Количество воды, теряемое в охладительном устройстве вследствие испарения, практически равно количеству пара, поступающего в конденсаторы турбин:
- расход воды на водоподготовку для восполнения потерь в схемах подпитки котлов и подпитки теплосети (м
/ч);
- расход воды на охлаждение подшипников и механизмов ТЭС:
= 171,83 + 542,38 + 40 = 754,21 (т/ч)
Насосы добавочной воды устанавливаются на насосной станции в количестве трех: два рабочих и один резервный, каждый производительностью 50 %.
Трубопроводы добавочной воды, как правило, следует проектировать в одну нитку, при этом на площадке ТЭС следует предусматривать емкость запаса воды на период ликвидации аварии в системе подачи добавочной воды или подвод воды от резервного источника.
Выбираются насосы добавочной воды Д-500-65 в количестве 3-х, два рабочих и один резервный, с основными техническими характеристиками: подача – 500 м
/ч, напор – 65 м, частота вращения – 1500 об/мин, мощность двигателя – 160 кВт, КПД – 76 %.
5 ОПРЕДЕЛЕНИЕ ЧАСОВОГО РАСХОДА ТОПЛИВА ЭНЕРГЕТИЧЕСКИХ КОТЛОВ
Для того чтобы рассчитать расход топлива котлоагрегатом, необходимо определить основные технические характеристики котлоагрегата. Так как в задании указано место расположения станции, а при выборе основного оборудования определен тип колоагрегата, его производительность и параметры пара, то необходимо, руководствуясь заводскими характеристиками, выбрать марку топлива, на котором планируется работа котлоагрегата.
По приведенным характеристикам, виду топлива и типу котлоагрегата определяется:
-
температура горячего воздуха после воздухоподогревателя
= 230
С. -
по принятой температуре горячего воздуха
и виду топлива принимается тип воздухоподогревателя (регенеративный РВП) и компоновка “хвостовых” поверхностей нагрева.
5.1 Часовой расход топлива одним котлоагрегатом:
где
=
- располагаемое тепло на 1 нм
газообразного топлива (кДж/кг);
η
= 93 % - коэффициент полезного действия брутто котлоагрегата (%);
- полное количество тепла, полезно отданное в котлоагрегат (кДж/ч):
где
=
- количество выработанного перегретого пара (кг/ч);
i
- энтальпия перегретого пара, определяется по давлению и температуре у главной паровой задвижки (кДж/кг);
i
- энтальпия питательной воды на входе в агрегат (кДж/кг).
= 420.
(3455 – 920,6) = 1064448000 (кДж/ч)
5.2 Часовой расход топлива с учетом механического недожога:
5.3 Часовой расход мазута на один котлоагрегат:
где
- теплотворная способность газа;
- теплотворная способность мазута.
6 ТОПЛИВНОЕ ХОЗЯЙСТВО СТАНЦИИ
6.1 Выбор оборудования топливного хозяйства ТЭС на жидком топливе
6.1.1 Выбор мазутных баков
Расчетный суточной расход мазута определяется, исходя из 20 – часовой работы всех установленных энергетических котлов при их номинальной производительности и 24 – часовой работы водогрейных котлов при покрытии тепловых нагрузок при средней температуре самого холодного месяца.
Величина приемной емкости основного мазутного хозяйства принимается не менее 20 – ной % емкости цистерн, устанавливаемых под разгрузку, а перекачивающие насосы должны обеспечить перекачку мазута не более чем за 5 часов. Перекачивающие насосы должны иметь резерв.
Приемная емкость растопочного мазутного хозяйства должна быть не менее 120 м
, а перекачивающие насосы устанавливаются без резерва.
Разогрев мазута в резервуарах мазутного хозяйства принимается циркуляционный, при этом разогрев осуществляется, как правило, по отдельному специально выделенному контуру.
Схема подачи мазута (одно – или двухступенчатая) в основном и растопочном мазутохозяйств принимается в зависимости от требуемого давления перед форсунками. Давление мазута перед форсунками с механическим распыливанием принимается 2 МПа или 3,5 – 4,0 МПа, с паровым распыливанием – от 0,4 МПа до 1,0 МПа.
Вязкость мазута должна быть не более 2,5
УВ для механических форсунок (для мазута марки 100 соответственно t = 135
С) и 6
УВ для паровых и ротационных форсунок. Подогреватели мазута устанавливаются после 1-й ступени мазутных насосов, схема установки подогревателей мазута и фильтров тонкой очистки должна предусматривать работу любого подогревателя и фильтра с любым насосом 1-й и 2-й ступени.
Емкость мазутохранилища для основного мазутного хозяйства определяется по формуле:
где
- количество установленных энергетических котлоагрегатов;
- часовой расход мазута на один котлоагрегат (т/ч);
t - запас мазута в мазутохранилище для энергетических котлоагрегатов (сут.);
γ = 1000 кг/м
- удельный вес мазута;
V = 20.1.29,75596.10.1 = 5951 (м
)
Так как емкость мазутных баков, установленных на Казанской ТЭЦ-3, обеспечивают расчетную емкость V = 5951 м
, то дополнительные баки не устанавливаются.
6.1.2 Выбор насосов мазутного хозяйства
В насосной основного мазутного хозяйства, кроме расчетного количества рабочего оборудования должно предусматриваться: по одному элементу резервного оборудования, насосы, подогреватели, фильтры тонкой очистки, по одному элементу ремонтного оборудования, основные насосы
1-й и 2-йступени.
Количество мазутных насосов каждой ступени основного мазутного хозяйства, должно быть не менее 4-х, в том числе по одному резервному и одному ремонтному. Для циркуляционного разогрева мазута предусматривается по одному резервному насосу и подогревателю. Оборудование основного мазутного хозяйства должно обеспечивать непрерывную подачу мазута в котельное отделение при работе всех рабочих котлов с номинальной производительностью. Производительность основных мазутных насосов при выделенном контуре разогрева выбирается с учетом дополнительного расхода мазута на рециркуляцию в обратной магистрали при допустимых скоростях.
При использовании для циркуляционного разогрева мазута в баках насосов 1-го подъема их производительность должна быть увеличена против производительности насосов 2-го подъема на величину необходимого для разогрева мазута в баках.














