125771 (717649), страница 4

Файл №717649 125771 (Виявлення впливу вуглецю на міжатомну взаємодію сплавів на основі заліза і нікелю) 4 страница125771 (717649) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

В спектрі сплаву Fe-30,2% Ni-0,8% Mn-1,15% C, після відпалу при 773 K, спостерігається тотожна тенденція, що і в сплаві легованому лише вуглецем і з близьким вмістом нікелю.

Таким чином, мессбауерівські дані та результати дослідження МКРН показали формування неоднорідної магнітної структури під впливом C, що корелює з даними дилатометричного аналізу термічного розширення сплаву Fe-Ni-C.

5. Вплив вуглецю на міжатомний зв’язок

Провели дослідження впливу вуглецю на швидкість ультразвуку і пружні модулі в легованому Fe-Ni-Cr-Mn-C аустеніті. Отримані значення пружних модулів , , , а також характеристичної температури добре узгоджуються з літературними даними отриманими в мессбауерівських дослідженнях температурних залежностей параметрів надтонкої взаємодії в ГЦК Fe-Ni-C та Fe-Mn-C сплавах. Але виявилося, що та не постійні і змінюються немонотонно в межах 2 % в залежності від концентрації C. Зокрема, зменшення характеристичної температури знаходиться в межах 2 - 3 K. Зменшення пружних модулів та на перший стадії, з підвищенням концентрації вуглецю до 0,2 – 0,3 % , може означати послаблення міжатомної взаємодії в аустеніті, а зростання величин та вказує на зростання взаємодії Me-Me. Але слід зазначити, що мікротвердість аустенітних сталей в цьому інтервалі концентрацій зменшується на 26 %.

Для перевірки факту впливу атомів проникнення на міжатомну взаємодію в Fe-Cr-Mn-Ni-C аустеніті, було використано мессбауерівську спектроскопію в геометрії розсіяння [4].

Аналіз надтонкої структури мессбауерівських спектрів розсіювання в Fe-Cr-Mn-Ni-C аустеніті показав, що спектри представляють собою суперпозицію трьох компонент, яки відносяться до атомів Fe в різних сусідствах з атомами проникнення та заміщення.

Проведено вимірювання концентраційної залежності компонент спектру та ізомерних зсувів. Показано, що підвищення концентрації вуглецю в межах 0,7% збільшує s – електронну щільність на атомах Fe, які мають перших сусідів атоми C, але не змінює імовірність поглинання - квантів без віддачі , що свідчить про незмінність взаємодії Me-Me. Отримані засобами мессбауерівської спектроскопії дані узгоджуються з результатами досліджень непружного розсіяння нейтронів в цій сталі.

Для розширення уявлень про термічне розширення інварних Fe-Ni сплавів та вплив на нього вуглецю провели дослідження міжатомної взаємодії цих сплавів [5] за допомогою вимірювань швидкості ультразвуку та визначили пружні модулі та характеристичну температуру .

Показано, що додаткове ведення 0,97% С у сплав з 29,7% Ni зменшує поздовжню та поперечну швидкості ультразвуку і наближає їх до значень швидкості ультразвуку в інварі Fe–36,0% Ni. При розчиненні вуглецю густина сплаву зменшується. Легування вуглецем 0,55% C сплаву з концентрацією нікелю біля 36% (Fe–36,1% Ni–0,55% C) зменшує тільки і підвищує величину (табл. 5). З отриманих даних випливає, що вуглець неоднозначно впливає на швидкості УЗ з різною поляризацією в залежності від концентрації Ni у сплаві.

Таблиця 5. Значення відносних змін густини, швидкостей УЗ, модулів пружності, коефіцієнта Пуассона та температури Дебая для Fe-Ni сплавів при зменшенні концентрації Ni від 36 до 30% в бінарних сплавах і при легуванні вуглецем сплавів з концентрацією Ni біля 36% та 30% відповідно.

Зміна складу сплаву

, %

, %

, %

, %

, %

, %

, %

, %

, %

36,0%Ni30,3%Ni

+5,6

+3,7

+8,0

+14,2

+17,3

+0,7

-25,3

+7,9

-14,2

30,3%Ni29,7%Ni-0,97%C

-2,9

-4,1

-5,9

-12,9

-14,0

-7,6

+7,8

-6,4

+6,3

36,0%Ni36,1%Ni-0,55%C

+0,1

+3,7

-3,5

-3,2

-6,7

+19,0

+18,2

-2,7

+18,9

Зменшення концентрації Ni від 36% до 30,3% збільшує всі пружні модулі і зменшує коефіцієнт Пуассона (табл. 5). Додавання 0,55% вуглецю в інварний сплав (Fe–36,1% Ni–0,55% C) викликає зменшення та на 3,2% і 6,7% відповідно (табл. 5). При легуванні вуглецем коефіцієнт Пуассона зріс від аномально низького значення 0,253 для сплаву Fe–36,0%Ni до 0,296-0,299 для сплаву Fe–36,1% Ni–0,55% C (на 18,2%), наближаючись до значення, властивого чистим металам.

У сплаві з меншим вмістом Ni (Fe–29,7% Ni–0,97% C), модулі Юнга та зсуву зменшились на 12,9% та 14% (табл. 6), а об’ємний модуль на 7,6% у порівнянні з бінарним сплавом Fe-30,3% Ni, наближаючись до значень , , для сплаву Fe–36,0% Ni. При легуванні вуглецем коефіцієнт Пуассона хоча і збільшився на 7,8% (табл. 5), але залишився аномально низьким 0,236.

Зміни швидкості ультразвуку та виникнення дефекту модулів , , при легуванні вуглецем інварних сплавів можуть бути пов’язані з його впливом на міжатомну взаємодію через вплив на магнітну структуру.

Отримані дані свідчать про те, що при легуванні вуглецем як сплаву з ~30% Ni, так і з ~36% Ni спостерігається зменшення значення , , та . Це означає, що вуглець зменшує взаємодію Me-Me в ГЦК Fe-Ni сплавах через підсилення магнітного внеску. На нашу думку, це відбувається завдяки відносній близькості температури вимірювань до температури Кюрі з боку нижчих температур. Саме завдяки послабленню жорсткості міжатомної взаємодії, (тобто зменшенню крутизни залежності останньої від міжатомної відстані) полегшується компенсація магнітострикційного походження теплового розширення сплаву при зміні температури нижче точки Кюрі, що зменшує температурний коефіцієнт лінійного розширення Fe-Ni-C сплавів до аномально низького значення [2] та викликає дефект модулів [5].

ВИСНОВКИ

1. Легування вуглецем в межах 0,55-0,61% інварного сплаву, який містить біля 36% Ni, підвищує температурний коефіцієнт термічного розширення при температурах нижчих за кімнатну і зменшує його при температурах вище 300 К, а також розширює температурний діапазон низького значення у порівнянні з бінарним сплавом Fe-36% Ni.

2. Дилатометричний аналіз показав, що вуглець та вуглець в комбінації з марганцем (0,8%) у сплаві, який містить біля 30% Ni, зменшує ТКЛР в інтервалі температур 110-380 K майже на порядок у порівнянні з ТКЛР сплавів Fe-Ni та Fe–Ni–Mn, які не містять вуглець, і наближає його до величини = (1,3-5,4) 10-6 K-1, а також розширює температурний діапазон з мінімальним значенням . Додаткове легування марганцем (0,4-0,8%) підвищує верхню границю низького значення ТКЛР на ~20 К.

3. Магнітометричні дослідження показали, що вуглець розширює температурний діапазон інварної аномалії в сплаві з 30% Ni в результаті підвищення температури Кюрі на 80-90 К та зниження мартенситної точки до температури нижчої за точку кипіння рідкого азоту.

4. Показано, що відпал Fe-Ni-C сплавів при 773 К збільшує величину ТКЛР і звужує температурний інтервал низького значення , що обумовлено зменшенням кількості вуглецю в твердому розчині в результаті графітизації і зміною магнітної структури.

Література

  1. Дослідження впливу деформації металу на взаємодію з середовищем на атомному рівні / В.І. Похмурський, В.І. Копилець, О.І. Балицький, С.А. Корній // Фіз.-хім. механіка матеріалів. – 1996. – № 3. – С. 16 – 19.

  2. Похмурський В.І., Копилець В.І., Корній С.А. Квантово-хімічне моделювання селек­тивного розчинення латуні та цинк-алюмінієвого сплаву // Фіз.-хім. механіка матеріалів. – 1998. – № 2. – С. 29 – 33.

  3. Теоретико-експериментальне дослідження селективного розчинення -латуні / В. Копилець, О. Калахан, С. Корній, Н. Червінська, Л. Батюк // Фіз.-хім. механіка матеріалів. Спец. випуск № 1 "Проблеми корозії та протикорозійного захисту матеріалів". – 2000.– Т.1. – С. 182 – 185.

  4. Копилець В.І., Корній С.А. Параметризація квантово-хімічного методу MNDO для розрахунку адсорбції на перехідних металах // Фіз.-хім. механіка матеріалів. – 2002. – № 2. – С. 120 – 121.

  5. Корній С., Копилець В. Використання методів квантової хімії до моделювання анодного розчинення легованих корозійно-тривких сталей // Фіз.-хім. механіка матеріалів. Спец. випуск № 3 "Проблеми корозії та протикорозійного захисту матеріалів". – 2002.– Т.1. – С. 380 – 384.

  6. Корній С.А. Анодне розчинення граней монокристала міді у хлоридовмісному водному середовищі // Фіз.-хім. механіка матеріалів. – 2003. – № 2. – С. 118-119.

Характеристики

Тип файла
Документ
Размер
1,37 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее