125771 (717649), страница 3

Файл №717649 125771 (Виявлення впливу вуглецю на міжатомну взаємодію сплавів на основі заліза і нікелю) 3 страница125771 (717649) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Підвищення концентрації вуглецю в сплаві Fe–Ni–C від 0,97 до 1,5% змінює при температурах нижчих за 380 К в межах похибки експерименту і зменшує ТКЛР в діапазоні 380 – 500 К.

Температурна залежність ТКЛР для сплаву з домішкою марганцю, Fe-29,7% Ni-0,83% Mn , подібна залежності (Т) для сплаву Fe-29,2% Ni [2]. Мартенситне перетворення, яке перешкоджає вимірюванню ТКЛР аустеніту при низьких температурах, починається при Мs = 218 K, що нижче у порівнянні з бінарним Fe-29,2% Ni сплавом (243 К) за рахунок легування Mn.

Для розширення даних про вплив домішки Mn на термічне розширення сплаву Н30 провели дослідження сплаву з дещо меншою концентрацією цього елементу (Fe-29,8% Ni-0,607% Mn). Характер залежності (T) подібен залежності сплаву Fe-29,2% Ni так і Fe-29,7% Ni-0,83% Mn. Середнє значення ТКЛР при температурі 300 K дещо менше ніж в останньому сплаві і дорівнює 10,410-6 K-1, а значення < > для діапазону 300-500 К майже співпадає (14,910-6 K-1). Мартенситне перетворення починається при більш високій температурі Мs = 226 K, що узгоджується з меншою концентрацією марганцю в сплаві.

Для сплавів, які містять марганець та вуглець (Fe–30,2% Ni–0,8% Mn–1,15% C і Fe–30,1% Ni–0,44% Mn–1,22% C) і в яких не відбувається мартенситне перетворення, спостерігається монотонна зміна ТКЛР у відносно широкому температурному інтервалі. При концентрації Mn в сплавах Fe–Ni–Mn–C до 1% в розглянутому діапазоні температур загальний хід залежності (Т) принципово не змінюється, але існує тенденція до зниження при температурах, вищих за кімнатну.

Для виявлення впливу C і Mn на магнітні властивості провели температурні дослідження магнітної сприйнятливості та намагніченості насичення ГЦК Fe-Ni і Fe-Ni-С сплавів. Після гартування від 1373 K сплав Fe-30,3% Ni має стійку ГЦК структуру за кімнатної температури. Це дає низьку мартенситну точку Мs, значення якої по кривим температурної залежності магнітної сприйнятливості складає 243 K. При легуванні вуглецем цього сплаву, точка мартенситного перетворення зміщується нижче температури кипіння рідкого азоту. Дані кривих магнітної сприйнятливості вказують на підвищення температури Кюрі на 85-95 K в порівняні з бінарним сплавом. Легування цього сплаву домішкою марганцю в кількості 0,83% призводить лише до зниження, як мартенситної точки так і точки Кюрі. При легуванні вуглецем, сплав Fe-30,2% Ni-0,8% Mn-1,15% С, мартенситне перетворення не спостерігається, а температура магнітного перетворення підвищилась на 130 K.

На кривих температурної залежності намагніченості насичення сплавів [1] спостерігається підвищення значень температур Кюрі в порівнянні з кривими магнітної сприйнятливості, за нашим припущенням, це пов’язано з впливом магнітного поля. Але загальна картина впливу елементів на температуру магнітного переходу зберігається.

Для сплавів Fe–Ni, Fe–Ni–C та Fe–Ni–Mn–C контролювали значення коерцитивної сили Hc. Для сплаву Fe-36,0% Ni значення коерцитивної сили при зміні температури від 77 до 300 K не змінюється і становило Hc = 95,5 А/м. При зменшенні концентрації нікелю до 30,3% значення Hc зменшилося на 17% за кімнатної температури. При легуванні вуглецем 0,97% та 1,5% Hc зросло, як за кімнатної температури, так і при температурі кипіння рідкого азоту, що корелює з підвищенням температури Кюрі цих сплавів. Легування домішкою марганцю 0,83% сплаву H30 не змінило значення Hc у порівнянні зі сплавом з 0,97% C. Значення коерцитивної сили сплаву Fe-30,2% Ni-0,8% Mn-1,15% C при температурах 77 та 300 K не змінилось у порівнянні зі сплавом Fe-29,7%Ni-0,97%C.

Для підтвердження ролі вуглецю у формуванні інварної аномалії провели дослідження впливу відпалу при 773 К на термічне розширення ГЦК Fe-Ni і Fe-Ni-С сплавів. В сплаві з вмістом вуглецю 0,55% та концентрацією нікелю 36,1% після відпалу при 773 K в діапазоні температур 110-300 K спостерігається збільшення значення ТКЛР на 44%, табл. 4. При температурах від 300 до 500 K зберігається тенденція до збільшення < >, але вже на 26%.

Таблиця 4. Значення ТКЛР сплавів, отримані за кривими нагрівання після відпалу при 773 K

Позначення сплаву

Fe–36,1% Ni–0,55% C

0,23

2,17

1,71

1,35

0,93

2,68

Fe–29,7% Ni–0,97% C

1,61

5,13

6,39

10,73

11,08

13,42

Fe–30,5% Ni–1,5% C

3,74

8,36

6,37

10,21

10,73

11,84

Fe–30,2% Ni–0,8% Mn–1,15% C

1,65

4,72

5,79

10,52

12,20

16,51

В сплаві з вмістом вуглецю Fe–29,7% Ni–0,97% C , після відпалу при 773 K спостерігається мартенситне перетворення при Мs = 143 K. Значення сплаву за кімнатної температури виросло майже в два рази і наблизилось до значення в бінарному сплаву Fe-29,2% Ni.

В сплаві з більшим вмістом вуглецю Fe-30,5% Ni-1,5% C також спостерігається мартенситне перетворення, але на 11 K вище по температурі ніж в сплаві з 0,97% C. При температурі 300 K значення ТКЛР в межах похибки співпадає зі значенням для сплаву Fe–29,7% Ni–0,97% C. Проте в температурному діапазоні 300-500 K < > зросло на 6% по відношенню зі сплавом з меншим вмістом вуглецю.

В сплаві з домішкою вуглецю та марганцю Fe-30,2% Ni-0,8% Mn-1,15% C, після відпалу при 773 K, спостерігається мартенситне перетворення на 4 K вище ніж для сплаву тільки з домішкою вуглецю в кількості 0,97%. Середнє значення < > в діапазоні температур 110-500 K виросло майже на 67% по відношенню до сплаву після гартування з 1373 K. Треба відмітити, що значення мікротвердості для цього сплаву Hм понизилось лише на 10%.

Таким чином, показано, що значення ТКЛР і мікротвердості залежить від відпалу, що обумовлює зменшення концентрації розчиненого вуглецю за рахунок графітизації.

4.Дослідження впливу вуглецю і марганцю на магнітну структуру сплавів Fe-Ni

Дослідження впливу вуглецю і марганцю на магнітну структуру в Fe-Ni та Fe-Ni-С сплавів методами мессбауерівської спектроскопії та малокутового розсіяння нейтронів для розширення уявлень про магнітний внесок у інварний ефект. Сплави з вуглецем є ефективним чинником, щоб вплинути на магнітну структуру в Fe-Ni сплавах.

Для вивчення розподілу надтонких полів провели мессбауерівські вимірювання сплавів в геометрії пропускання, які містять біля 30% та 36% нікелю, а також вуглець. Обробку спектрів провели за допомогою модернізованого нами метода Віндоу. Додавання вуглецю в інварний сплав Fe–36,0% Ni не змінює загальну форму спектру, а також структуру p(H) розподілу. Розчинення вуглецю підвищило низьку та середньо польові компоненти і зменшило внесок високо польової.

Наша робота з обробки спектрів інварних сплавів модернізованим методом Віндоу має важливу перевагу перед іншими, яка полягає у можливості визначення ізомерних зсувів компонент спектру з різною величиною надтонкого поля [1]. Застосовуючи цю методику, ми отримали нову інформацію стосовно значень ізомерних зсувів в сплавах Fe-Ni-C, які дають розмиті ЯГР спектри. Встановлено, що при легуванні вуглецем s-електронна щільність на ядрах атомів заліза зменшується. Це означає, що атоми вуглецю займають позиції сусідні з атомами Fe в конфігураціях з низьким вмістом нікелю, оскільки нікель збільшує термодинамічну активність вуглецю в аустеніті.

Додавання вуглецю повністю змінює магнітне упорядкування в сплаві з 30% Ni у порівнянні з малою зміною в інварі Fe-36,0% Ni. При легуванні вуглецем (сплав Fe-29,7% Ni-0,97% C)внесок високопольових компонент збільшився в порівнянні зі сплавом Fe-30,3% Ni без вуглецю . Це відбулося через зміну ближнього атомного порядку в підсистемі заміщення. Зміна порядку призводить до локального перерозподілу електронного заряду між атомом Fe та доданою домішкою, що проявляється в зміні спінової та зарядової щільності на ядрах атомів Fe. При легуванні вуглецем ізомерні зсуви складових спектру з малими полями, які відповідають конфігураціям атомів заліза і вуглецю, збільшились. Збільшення ізомерного зсуву високопольових компонент викликано атомами нікелю та збільшенням їх кількості в найближчому оточенні атомів заліза за рахунок їх перерозподілу стимульованому вуглецем.

Для встановлення впливу марганцю на розподіл надтонких полів провели мессбауерівське дослідження сплаву Fe-30,2% Ni-0,8% Mn-1,15% C. Результат з оцінки ізомерних зсувів вказує на те, що марганець збільшує s - електронну щільність на ядрах заліза, зменшуючи приблизно у два рази д у порівнянні з таким же значенням для сплавів Fe-Ni-C, і таким чином частково компенсує вплив вуглецю.

Для того, щоб підтвердити, що вуглець спричиняє зміни в магнітній структурі, провели дослідження з малокутового розсіювання нейтронів [3]. Для цього вивчалися інварні сплави Fe-30,3% Ni та Fe-30,5% Ni-1,5% C. Розмір та форма неоднорідностей оцінили, користаючись оберненим Фур'є аналізом. МКРН спостерігається як у сплаві Fe-30,3% Ni так і в Fe-30,5% Ni-1,5% C, що вказує на існування неоднорідностей в аустеніті. Нахил кривої МКРН залежить від діапазону векторів розсіювання q і наявності вуглецю в сплаві. Для апроксимації кривих МУРН був застосований експоненціальний закон: , де A – фактор контрасту, а B – залишковий некогерентний фон. Моделювання кривих відповідно до цього закону, дозволило оцінити значення показника б у малому і великому векторі розсіювання q.

Два нахили на кривих МКРН, вказують на різну структуру неоднорідностей малого та великого розміру. Для Fe-30,3% Ni сплаву величина б для великого q вище, ніж для малого q, але зберігається меншим, чим 3. Це означає, що ми маємо деякі некомпактні неоднорідності з фрактальною структурою.

Добавка вуглецю в інвар веде до зміни інтенсивності розсіювання і відповідно до нахилу кривої МКРН у всьому інтервалі q. Число і структура неоднорідностей змінюється зі зміною кількості вуглецю.

Для малих векторів розсіювання q = 0,006-0,03 значення показника б = 3,9 ± 0,1. Це означає, що МКРН для малих значень q викликане від неоднорідностей великого розміру, що характеризуються гладкими поверхнями. Такими неоднорідностями можуть бути кластери атомів C та Ni великого розміру, у тому числі і магнітні неоднорідності, що підтверджують і мессбауерівські спектри .

Таким чином, з однієї сторони головний внесок у МКРН у Fe-Ni і Fe-Ni-C сплави є магнітний, а з іншої сторони це є неоднорідності, які описуються в терміні фрактальної структури.

Для того, щоб одержати відомості про розмір та форму неоднорідностей у сплавах, дані, в інтервалі з q більшим, ніж 0,01 Е-1, були проаналізовані, користаючись методом Оберненого Фур'є Перетворення (ОФП). МКРН від зразка, що містить вуглець, вказує на формування великих неоднорідностей. Аналіз методом ОФП показав, що радіус інерції збільшується від 146 Е (14,6 нм) до 214 Е (21,4 нм).

Для розширення уявлення про вплив вуглецю на формування магнітної структури і, як наслідок, інварних властивостей, дослідили вплив відпалу на фізичні характеристики.

На початку провели дослідження сплаву з вмістом нікелю 25,3% і легованим 0,78% вуглецю. Після відпалу при температурі 773 K виник перерозподіл атомів вуглецю. Це добре видно зі зменшення інтенсивності лінії дублету сплаву Fe-25,3% Ni-0,78% C на 12%. Для того, щоб показати, що вуглець викликає надтонку структуру, проаналізували спектри, отримані від зразка з більшим вмістом нікелю 29,7% і легованим 0,97% вуглецю після старіння при 773 K . Після старіння, коли має місце кластеризація і графітизація в Fe-Ni-C сплавах, p(H) функція звужується і внутрішнє магнітне поле зменшується. Форма p(H) розподілу стає подібною до бінарного Fe-30,3% Ni сплаву. Параметр гратки аустеніту сплаву Fe-29,7% Ni-0,97% С зменшився на 0,58% після відпалу при 773 K і досяг значення для бінарного сплаву з вмістом нікелю 30,3%. Утворення графіту в Fe-Ni-C сплаві після відпалу показано металографічним методом.

Характеристики

Тип файла
Документ
Размер
1,37 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7006
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}