125611 (717616), страница 2
Текст из файла (страница 2)
Якщо для видалення тиофена необхідно додати неграничні з'єднання, присадку останніх подають безпосередньо у фракцію перед надходженням її в насос. Показники очищення фракції ВТК із використанням присадки приблизно наступні: фарбування із сірчаною кислотою 0,15— 0,4; бромне число 0,12—0,20; зміст тиофена не більш 0,1%.
При очищенні фракції ВТК чи БТ (бензол-толуол) не вдається одержати бензол для синтезу, у якому зміст тиофена не повинний перевищувати 0,0002—0,0004%, а в деяких випадках він повинний бути вільним від тиофена. Тому бензол звичайної якості, наприклад для нітрації, перемивають сірчаною кислотою вдруге. При атом завдяки відсутності в ньому реакционпоспособных гомологів бензолу процес видалення тиофена вдається провести з незначними втратами продукту.
Повторне очищення бензолу можливе в двох варіантах— із застосуванням чи олеуму моногідрату, чи з застосуванням звичайної 92—94%-напувай сірчаної кислоти і добавкою неграничних з'єднань.
Промислове застосування одержав метод перемывки бензолу 92—94%-ний сірчаною кислотою з добавкою неграничних з'єднань. Перемитий бензол піддають ректифікації для відділення погонів і кубових залишків з одержанням бензолу для синтезу і нітрації.
Досвід промислового виробництва бензолу з застосуванням різних алкилирующих присадок підтверджує його високу якість, що відповідає вимогам стандартів.
При очищенні бензольних продуктів сірчаною кислотою невисокої концентрації (93,0—94,5%) у присутності неграничних з'єднань майже не розвиваються процеси сульфирования, тому у відпрацьованій кислоті міститься мало органічних домішок (не більш 2,5—5,0%). Така кислота направляється на очищення ВТК спільно зі свіжою кислотою, а потім після регенерації передається у виробництво сульфату амонію. Таким чином, загальна витрата кислоти на очищення скорочується. При східчастій подачі присадки схема ускладнюється, але витрата реагентів може бути скорочений і ступінь очищення підвищений.
Так, при одноступінчатому очищенні бензолу з вихідним змістом тиофена 0,02—0,03% до залишкового його змісту 0,00005% витрачається 1% пипериленовой фракції, а при двоступінчастому очищенні її витрата можна знизити до 0,5—0,6%.
Основним апаратом для здійснення сернокислотной очищення фракції ВТК в установках періодичної дії є меланжер з механічними пристроями, що перемішують -і пропелерними чи турбулентними мішалками. В установках безупинної дії широке застосування одержали апарати з механічними пристроями (трилопатеві пропелери), гідравлічні змішувачі — кульові, змієвикові, ребристі радіатори, а також відцентрові змішувач-насоси-змішувачі.
Каталітичне гідроочищення
Найбільш перспективним методом очищення бензолу є каталітична гідрогенізація, що дозволяє Поряд із глибоким очищенням від сірчистих і неграничних з'єднань досягти глибокого видалення насичених вуглеводнів.
Сутність процесу каталітичної гндроочистки полягає в обробці пар сировини, що очищається, (фракції сирого бензолу) чи воднем водородсодержащим газом над каталізатором при відповідних температурі, тиску й об'ємній швидкості сировини з одержанням бензолу і його гомологів і повного гідрування домішок, що містяться.
Схема процесу каталітичного гідроочищення складається з чотирьох стадій: 1) підігрівши і випар сировини (фракції ВТК.); 2) каталітичне гідроочищення; 3) відділення газу і підготовка отриманого рафината; 4) ректифікація рафииата з одержанням кінцевих продуктів.
На відміну від жидкофазной очищення фракцій сирого бензолу (ВТК) концентрованою сарною кислотою при гідруванні під тиском процес здійснюється в газовій фазі над каталізатором, тому необхідно цілком перевести продукти, що очищаються, у пароподібний стан і відокремити їх від залишку, що невипаровується. Отримані пари фракції змішуються з чистим чи воднем коксовим газом (близько 57—60% водню) і піддаються каталітичному гідроочищенню,
При проходженні суміші пар і водень з газу, що тримає, над каталізатором під впливом температури і тиску протікають різні реакції, до числа яких від носять: реакції гидрообессеривания, гідрування ненасичених з'єднань і ароматичних вуглеводнів, гідрокрекінг насичених вуглеводнів, деметилирование гомологів бензолу.Цільовими реакціями очищення є гидрообессери-вание і гідрування ненасичених вуглеводнів. При одержанні бензолу високого ступеня чистоти визначальними є реакції гндро обесееривапня, особливо гидро-геполиз(руйнування) найбільше термічно Стабнльного з'єднання —тиофена. Каталізаторами гидрообессеривания можуть бути чи сульфіди оксиди молібдену, кобальту, вольфраму, нікелю, ванадію. У промисловості широко розповсюджений алюмокобальтмолибдеповъш катав.
Хімізм процесу гідроочищення полягає в тім, що серусодержащие домішки гидрируются з утворенням відповідних вуглеводнів і сірководню:
Сірковуглець З5а-|- 4На-»-2На5 + СН4; Этилмеркантан З2Н55Н + На-э-Н 4- СгНй; Мстилтиофен едЗСНз + 4 Н> - Нг5 + З5Н12; Тиофен З4Н48 + 4 Н2 -> Н28 4- З4Н1Ц.
З усіх сірчистих з'єднань, що містяться в сирому бензолі, найбільш стійким при гідруванні, а також при термічній обробці є тиофен, що не розкладається навіть при 800°С Однак у присутності водню і відповідних каталізаторів при наявності необхідного тиску розкладання тиофена відбувається порівняно повно.
Азотсодержащие речовини при гідруванні дають аміак і вуглеводні, кислородсодержащие з'єднання — воду і вуглеводні:
СН3СЫ + ЗНз + ОД, + Ш3, ОДИ + 5Н2-З5Н1а + гШ8, 6 СвН5ВІН + 3 И,, -> 5 Сон6 + 6 Н2О.
Гидродеалкилирование гомологів бензолу протікає по реакціях:
З6Н5СН3 + Н, - ОД + СН4, З,;Н4 (СН8), + Н2 = = З,Н5СН3 + СН4.
Неграничні з'єднання насичуються по реакціях: С„Н5СН = СН2 -[- Нг = З6НЬСН2СН3.
Також здійснюються реакції гідрокрекінгу насичених вуглеводнів (циклогексану, метилциклогексана) з утворенням парафінових вуглеводнів.
Процес каталітичного гідроочищення може здійснюватися по среднетемпературной схемі і за схемою високотемпературного очищення.
Виробничі показники каталітичного гідроочищення фракції ВТК наступні: На мал. 44 приведена принципова схема среднетем-пературной каталітичного гідроочищення. Вихідною сировиною служить БТКС, подавана насосом високого тиску 14 на випарну установку / — систему каскадів, у яких послідовно відбуваються підвищення температури і випар фракції. Випар фракції виробляється безпосередньо в потік циркуляційного газу при великій швидкості останнього, щоб попередити відкладення полімерів на поверхні апаратури, що гріє.
Після останньої секції каскаду полімери випускаються у виді 12—15%=лого розчину фракції, що невипарувалася, БТКС. Розчин полімерів переганяється для одержання дистиляту, що передається у вихідну фракцію. Побічним продуктом є полімерна смола.
Температура парогазовой суміші після випару 170— 190"З, тиск 4,0—4,5 МПа. Після каскаду парогазовая суміш направляється в теплообмінник 2, де нагрівається циркуляційним газом до 200—230°С и надходить у форкоптактный апарат 3. В останньому в присутності алюмо-кобальтмолибдеттового каталізатора здійснюється гідростабілізація (форконтактная очищення), при якій з форконтактного апарата 3 парогазовая суміш надходить у трубчасту піч 4, що обігрівається коксовим газом, і нагрівається до 340—360°С. З печі парогазовая суміш надходить у реакторний блок 5, що складається з двох реакторів (контактних апаратів), що мають алюмокобальтмо-либденовый каталізатор. У першому відбувається гидрогенолиз (руйнування) основної маси тиофена й у незначному ступені гидрируются ароматичні вуглеводні. Температура підвищується на 15°С. Після першого реактора в систему уводиться свіжий коксовий газ з температурою 200—220°С, що дозволяє та 15—20°С підвищити температуру перед другим реактором. Коксовий газ попередньо очищається від сірководню, оксидів азоту й осушується. Газ також звільняється від бензольних вуглеводнів і легких компонентів головної фракції.
В другому реакторі 5 відбувається руйнування що залишилося тиофена, у незначному ступені гідрування бензольних вуглеводнів, а також гідрування компонентів уведеного коксового газу. Завдяки экзотсрмичности реакції температура піднімається на 15—20ЭС. Підвищення температури в межах 340 —400°С приводить до більш глибокого руйнування тиофека й одночасному росту змісту насичених з'єднань (циклогексану і міти-циклогексану) у результаті розвитку процесів гідрування.
Про зниження активності каталізатора судять по змісту тиофена в рафінаді. При змісті водню в коксовому газі-58—60% зміст його в циркулюючому газі звичайно підтримую: на рівні 48—50%.
У першому реакторі руйнуванню звичайно піддається 97—98% вихідного тиофена, у другому досягається необхідний ступінь очищення.
При змісті тиофена у вихідній сировині 1,0—1,4% після другого реактора воно складає 0,0004—0,0006%, зміст л-гептану зберігається на тім же рівні, що й у сировину, а зміст циклогексану і метидциклогексана зростає.
Після другого реактора парогазовая суміш з температурою 360—370°С надходить у теплообмінник 2, віддає тепло циркулюючому газу і прохолоджується до 240—250ЙС. З цією температурою вона надходить у теплообмінники каскадів випарника 1, де прохолоджується до 120—130°С, віддаючи тепло фракції БТКС.
Після теплообмінників каскаду випару ! парогазовая суміш надходить у холодильник 7, прохолоджується до •25—35°С и надходить у сепаратор високого тиску 8. В останньому при тиску 3,3—8,6 МПа виділяється циркуляційний газ, а конденсат з розчиненими газами через редукційний пристрій 9 надходить у сепаратор 10 низького тиску (0,2—0,3 МПа). Рафінад надходить у підігрівник 6 і стабілізаційну колону 11, у якій виділяється залишкова кількість газів, а також сірководню й аміаку.
Рафінад після стабілізаційної (опарної) колони 11, холодильника 7 попадає в промыватели лугу 12, а потім у сховищі 13, відкіля направляється на ректифікацію. Циркуляційний газ після сепаратора високого тиску 8 за допомогою компресора 15 подається в систему. Енергетичні витрати процесу гідроочищення на 1 т сировини (фракції БТКС) складають: електроенергії 90— 120 квг-ч; пари 1,89—2,52 МДж; води 1,5 м3.
Процес гідроочищення відрізняється великим виходом і порівняно високою якістю продуктів, що дозволяє компенсувати збільшені капітальні витрати і витрати по переділі.
У результаті среднетемпературного процесу досягається повне видалення неграничних з'єднань, глибоке очищення від тиофена, але не досягається очищення бензолу від насичених вуглеводнів. В установці високотемпературної гидроочисткп процес проводять на алюмокобальтмолибденовом каталізаторі під тиском 4 МПа і при температурі вище 550°С, що дає можливість піддати гідрокрекінгу насичені, вуглеводні і цим поліпшити якість бензолу, збільшити його вихід до 98%.
Схема гідроочищення сирого бензолу, розроблена співробітниками УХИНа, Гипрококса і Гипрогазтоппрома, передбачає очищення лише фракції ВТК, що зберігає ресурси смолообразующих для виробництва полімерних смол і дає можливість використовувати сірковуглецеву фракцію для одержання сірковуглецю і циклопентадиена. Тому з першого бензолу раніш всего виділяється сірковуглецева фракція. Отримана фракція ВТК надходить па гідроочищення.
Продукт після очищення під тиском і відмивання від сірководню й аміаку містить значна кількість неароматичних (насичених) вуглеводнів, що утворилися в результаті гідрування неграничних вуглеводнів. Наявність неароматичних домішок, багато хто з який утворять з бензолом і іншими ароматичними вуглеводнями азеотропні суміші, ускладнює ректифікацію рафината.
Для одержання бензольних продуктів, що не містять насичених вуглеводнів, передбачається сполучення каталітичного гідроочищення з екстрактивною ректифікацією.
Ректифікація сирого бензолу
Технологія напівбезупинної ректифікації сирого бензолу
У сучасній практиці переробки сирого бензолу широке поширення одержала напівбезупинна технологічна схема Гипрококса роздільної переробки двох бензолів — першого і другого. За цією схемою передбачається безупинний добір сірковуглецевої (головний) фракції, чистих бензолу і толуолу, періодична ректифікації залишку, другого бензолу і сірковуглецевої фракції. Для здійснення цих задач цех ректифікації має у своєму розпорядженні агрегати безупинної і періодичної дії, що складаються з ректифікаційних колон і конденсациопно-охладительной апаратури, мерников і зборів-піків продуктів процесу. На мал. 45 представлена безупинна схема попередньої ректифікації. Сирий бензол зі сховища 1 подається насосом 2 у напірний бак 3. З напірного бака сирий бензол надходить насамперед у нижню трубчатку дефлегматора 4, де підігрівається за рахунок тепла конденсації пар, а потім — у середню частину бензольної колони 5. Тут глухою парою із сирого бензолу відганяються сірковуглецева і бензольна фракції. Сірковуглецева фракція, що має більш низьку температуру кипіння, проходить у виді пар дефлегматор 4 і потім конденсується в конденсаторі-холодильнику 6. Пари бензольної фракції конденсуються в дефлегматорі 4 і у виді флегми повертаються в бензольну колону на верхню тарілку, Бензольна фракція в рідкому виді відбирається з однієї з верхніх тарілок бензольної колони в комбінований конденсатор-холодильник 7 і мерник 8. Сірковуглецева фракція після конденсатора-холодильника 6 у виді готової фракції направляється в мерник 9. Дефлегматор бензольної колони складається з декількох горизонтальних трубчаток, у нижньої пари з колони додатково прохолоджуються технічною водою. Якщо з якої-небудь причини відбирати сірковуглецеву фракцію неможливо холодильник-конденсатор-холодильник цієї фракції виключають, добір рідкої бензольної фракції з колони припиняють і суміш пар цих двох фракцій направляють у конденсатор-холодильник 7 і мерник 3.Отриманий у бензельной колоні залишок після відгону з сирого бензолу сірковуглецевої і бензольної фракцій по трубопроводу перетікає в середню частину колони 10 цій колоні глухою парою виділяються пари толуольной фракції, що, пройшовши дефлегматор 11, конденсуються у конденсаторі-холодильнику 12 до надходять у мерник 13
Стікаюча з нижньої частини колони 10 суміш ксипольной фракції, важкого бензолу і сольвент-нафты направляється в середню частину колони 14. У цій колоні із суміші, що надійшла, глухою і гострою парою виділяються ксилолытая фракція і важкий бензол.
Ксилольная фракція у виді пар залишає копонну зверху і проходить дефлегматор 15, потім холодильник-конденсатор-холодильник із сепаратором 16 і в рідкому виді надходить у мерник 17.3
Пари важкого бензолу відбираються з однієї з нижніх тарілок колони. Ці пари проходять конденсатор -холодильник із сепаратором 18 і в рідкому виді надходять у мерник 19.
Залишок від ректифікації сирого бензолу — сольвент-нафта -з колони надходить у сховище 20. Сольвент-нафта передається в смолоперсгснный цех, де з її шляхом кристалізації виділяють пафталип.
















