115364 (711654)
Текст из файла
Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра МПМ
Изучение тригонометрического материала в школьном курсе математики
Реферат
Исполнитель:
Студентка группы М-42 Головачева А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Лебедева М.Т.
Гомель 2007
Содержание
Введение
1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества
2. Методика введения определений тригонометрических функций углов от 0° до 180°
3. Методика изучения тригонометрических функций в курсе алгебры
4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению
Заключение
Литература
Введение
Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".
1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества
Знакомство с тригонометрическим материалом начинается в курсе геометрии при знакомстве с прямоугольным треугольником. Понятия ,
и
острых углов треугольника вводится для углов от
до
, как отношение сторон этого треугольника. Предварительно учащиеся должны усвоить названия сторон прямоугольного треугольника: катеты (стороны прямого угла) и гипотенуза (сторона противолежащая прямому углу). Для этого необходимо предложить учащимся прямоугольные треугольники, разнообразные по расположению вершин прямого угла и предложить назвать стороны треугольника.
Назовите катеты в ABC,
APN. Назовите гипотенузы в
LKM и
EFA. Будут ли гипотенузами следующие отрезки: AB, KL, AP, AN, EF, FA в указанных треугольниках и почему?
Следующие выражения "прилежащий" и "противолежащий" отрабатываются на следующем этапе. Для этого необходимо по указанным треугольникам предложить учащимся назвать прилежащие и противолежащие острым углам катеты. Назвать отрезки: KL, PN, EA и попросить учащихся назвать те углы, против которых лежат эти катеты или, которым они прилегают.
Первым вводится понятие угла и доказывается теорема: " Косинус угла зависит от градусной меры угла и не зависит от расположения и размеров треугольника". Это определение уже " работает" при доказательстве теоремы Пифагора.
С остальными понятиями учащиеся знакомятся в пункте " Соотношения между сторонами и углами в прямоугольном треугольнике". sin , tg
Формируется свойство: синус и тангенс угла так же, как и косинус, зависят от величины угла.
Для синуса это доказывается так:
=
,
так как косинус зависит только от величины угла, то и синус зависит только от величины угла.
Из определений ,
и
получаем следующие правила:
-
Катет, противолежащий углу
, равен произведению гипотенузы на синус
;
-
Катет, прилежащий к углу
, равен произведению гипотенузы на косинус
;
-
Катет, противолежащий углу
, равен произведению второго катета на тангенс
.
По этим правилам можно находить неизвестные элементы в прямоугольном треугольнике.
Перечисленные правила могут быть выведены учащимися самостоятельно. Для этого предлагаются вопросы: В прямоугольном треугольнике MNP, LN= , LM=
, гипотенуза MP=m. Найти длины катетов этого треугольника. ( Задача решается по определению).
Раньше по программе тригонометрические функции и соотношения между углами и сторонами в прямоугольном треугольнике изучались в курсе 8 класса.
После введения понятий ,
и
рассматривались решения основных задач, связанных с отысканием длин сторон и величин углов в прямоугольном треугольнике.
Задача №1. Дано: a, b. Требуется найти A,
B, c.
Задача №2. Дано: a, c. Требуется найти A,
B, b.
Задача №3. Дано: a, A. Требуется найти
A, b, c.
Задача №4. Дано: a, B. Требуется найти
A, b, c.
Задача №5. Дано: a, A. Требуется найти
B, a, b.
По действующей программе эти задачи в курсе 8 класса (бывший 7 класс) заменены такой: В прямоугольном треугольнике даны: гипотенуза c и острый угол . Найдите катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.
Вводятся основные тригонометрические тождества:
,
,
,
.
В частности, основное тригонометрическое тождество выводится из формулировки теоремы Пифагора:
,
.
Учащиеся знакомятся с некоторыми свойствами функций острого угла: 1) при возрастании острого угла и
возрастают, а
- убывает; 2) для любого острого угла
:
,
; которые формулируются как теоремы. Их доказательство связывается с соотношениями острых углов в прямоугольном треугольнике:
,
, тогда
,
.
,
тогда из равенства правых частей получаем:
.
, тогда
.
Вывод свойства возрастания и убывания выглядит так:
Пусть и
- острые углы,
и
, и она пересекает стороны углов
и
в точках
и
соответственно.
Так как , то точка
лежит между точками
и
, тогда
. А значит, по свойству наклонных,
(через сравнение их проекций). Так как
,
, то косинус убывает. А так как
, то синус возрастает.
2. Методика введения определений тригонометрических функций углов от
до
Расширение области определения тригонометрических функций от до
происходит в теме: "Декартовы координаты на плоскости".
Рассмотрим окружность с центром в начале координат произвольного радиуса R. Откладываем в полуплоскость угол
. Пусть точка
имеет координаты
и
.
,
, то из треугольника
:
,
.
Определяются значения
и
этими формулами для любого угла α (для
0-исключается).
Можно найти значения этих функций для углов 900, 00, 1800. Доказывается, что для любого угла α , 00<α<1800,
.
п
y
овернем подвижный радиус на угол 1800-α=
А1(x1, y1)
1800-α
по гипотенузе и острому углу: => OB1=OB; A1B1=AB => x = -x1,y = y1=>
B1
α
R
O

Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности.
Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00 до 1800; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".
Конкретизировать, например, понятие cos острого угла прямоугольного треугольника, можно по следующей методической схеме:
-
построить на миллиметровой бумаге прямоугольный треугольник ABC;
-
обозначить величину острого угла А буквой α;
-
измерить (по клеткам) прилежащий катет АС и гипотенузу АВ;
-
вычислить отношение
-
записать значение cos α (делается следующая запись cos α ≈ в которой для α не указывается его конкретное значение);
-
измерить транспортиром угол α, найти его величину и записать значение косинуса этого угла данного прямоугольного треугольника.
Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370. Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370, они построят прямоугольный треугольник (каждый свой) с углом в 370, измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370. Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370 при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.
180>Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.