PTCA (708640), страница 6

Файл №708640 PTCA (ПТЦА - Прикладная теория цифровых автоматов) 6 страницаPTCA (708640) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Вследствие транзитивности отношения эквивалентности два автомата Мили S1 и Sa также будут эквивалентными, но у последнего будут на 3 состояния больше. Т.о., эквивалентные между собой автоматы могут иметь различное число состояний, в связи с чем возникает задача нахождения минимального (т.е. с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов.

МИНИМИЗАЦИЯ ЧИСЛА ВНУТРЕННИХ СОСТОЯНИЙ ПОЛНОСТЬЮ ОПРЕДЕЛЕННЫХ АВТОМАТОВ.



Рассмотрим метод минимизации полностью определенных автоматов, предложенный Ауфенкампом и Хоном.

Основная идея этого метода заключается в разбиении всех состояний исходного абстрактного автомата на попарно непересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием. Т.о. получающийся в результате минимальный автомат имеет столько состояний, на сколько классов эквивалентности разбиваются состояния исходного автомата.

Для пользования методом введем несколько определений.

Два состояния абстрактного автомата называются 1-эквивалентными в том случае, если реакции автомата в этих состояниях на всевозможные входные слова совпадают.

Объединение всех 1-эквивалентных состояний абстрактного автомата образует 1-класс эквивалентности.

1-эквивалентные состояния автомата называются 2-эквивалентными, если они переводятся любым входным сигналом также в 1-эквивалентные состояния.

Объединение всех 2-эквивалентных состояний образует 2-класс эквивалентности.

По индукции можно распространить определение до i-эквивалентных состояний и i-классов эквивалентности.

Если для некоторого i разбиения состояний автомата на ( i +1) - классы совпадает с разбиением на i-классы, то оно является разбиением и на  - классы эквивалентности.

Разбиение множества внутренних состояний автомата на  - классы и является требуемым разбиением на классы эквивалентности, при этом такое разбиение может быть получено за конечное число шагов.

Все вышеизложенное непосредственно применимо к минимизации автомата Мили. При минимизации полностью определенных автоматов Мура вводится понятие 0-эквивалентности состояний и разбиение множества состояний на 0-эквивалентные классы: к такому классу относятся одинаково отмеченные состояния автомата Мура.

Если два 0-эквивалентных состояния любым входным сигналом переводится в два 0-эквивалентных состояния, то они называются 1-эквивалентными. Все дальнейшие классы эквивалентности состояний для автомата Мура определяются аналогично приведенному для автоматов Мили.

Рассмотрим пример минимизации автомата Мили, заданного таблицами переходов и выходов :

Из таблицы выходов получаем разбиение на 1-классы эквивалентности 1, объединяя в эквивалентные классы Bi состояния с одинаковыми столбцами:

1 = {B1, B2}; B2 = {a1, a2, a5, a6}; B2 = {a3, a4}

Для получения 2-эквивалентных состояний строим таблицу 1-разбиения (табл.17), заменяя в таблице переходов состояния a1 соответствующими классами эквивалентности B1 или B2.











Из полученной таблицы 1-разбиения получаем 2-классы эквивалентности Ci и разбиение 2 = {C1, C2, C3}, где С1 = {a1, a1}, C2 = {a5, a6}, C3 = {a3, a4}. Сравнивая 2 и 1, отмечаем, что эти разбиения отличаются друг от друга. Поэтому аналогично строим таблицу 2-разбиения (табл. 18), опять заменяя в таблице переходов состояния ai соответствующими классами эквивалентности Ci.








Из полученной таблицы 2-разбиения получаем 3-классы эквивалентности Di и разбиение 3 ={ D1, D2, D3}, где D1 = {a1, a2}, D2 = {a5, a6}, D3 = {a3, a4}.

Сравнивая 3 и 2, замечаем, что D1 = C1, D2 = C2, D3 = C3, 3 = 3. Следовательно получили разбиение на - эквивалентные классы. Т.к. всего три таких класса, то минимальный автомат будет содержать всего три состояния. Выбираем из каждого класса Di по одному состоянию и получаем множество состояний A' минимального автомата. Пусть, например, A'={a1, a4, a5}. Для получения минимального автомата из первоначальных таблиц переходов и выходов (табл. 16) вычеркиваем столбцы, соответствующие "лишним состояниям" a2, a3, a6. В результате получается минимальный автомат Мили, эквивалентный исходному автомату (табл. 19).

Минимизацией числа внутренних состояний автомата заканчивается этап абстрактного синтеза.

Структурный синтез ЦА.

Задачи синтеза ЦА.

Канонический метод структурного синтеза ЦА.

Элементарные цифровые автоматы с памятью

(триггерные устройства) и их свойства.

Вслед за этапом абстрактного синтеза автоматов следует этап структурного синтеза, целью которого является построение схемы, реализующей автомат из элементов заданного типа. Если абстрактный автомат был лишь математической моделью, проектируемого устройства, то в структурном автомате учитывается структура входных и выходных сигналов автомата, а также его внутренне устройство на уровне логических схем. Основной задачей структурной теории автоматов является разработка общих методов построения структурных схем автоматов.

В отличие от абстрактного автомата, имеющего один вход и один выход, на которые поступают сигналы во входном и выходят в выходном W={W1,..,WG} алфавитах, структурный автомат имеет L входных каналов х12,..,хL и N выходных y1,y2,…,yN на каждом из которых присутствует сигнал структурного алфавита.

Обычно в качестве структурного используется двоичный алфавит.

В этом случае каждому входному сигналу ZF абстрактного автомата соответствует некоторый двоичный вектор (lf1,lf2,..,lfL), где lfL{0,1}.

Очевидно, что для представления (кодирования) входных сигналов Z1,..,ZF абстрактного автомата различными двоичными векторами должно быть выполнено условие

L ] log2F [,

аналогично

N ] log2G [

Например , Z={Z1,Z2,Z3,Z4} W={W1,W2,W3}.

Тогда L log24=2 N log23=2

Закодировать входные и выходные сигналы можно ,например, так:

Z1 = 00 W1 = 00

Z2 = 01 W2 = 01

Z3 = 10 W3 = 11

Z4 = 11

Cледовательно, структурный автомат с двумя входами x1 и x2 и двумя выходами y1 и y2 может быть представлен в виде:


Задача синтеза структуры автомата.

На этапе структурного синтеза предварительно выбираются элементарные автоматы, путем композиции которых строят логические схемы полученных на этапе абстрактного синтеза автоматов Мили и Мура. Если решение задачи структурного синтеза существует, говорят, что заданная система автоматов структурно полна.

Рассмотрим канонический метод структурного синтеза при котором используются элементарные автоматы некоторого специального вида – автоматы с памятью, имеющие более одного состояния, и автоматы без памяти – с одним состоянием. Первые автоматы называются элементами памяти, вторые – комбинационные или логические элементы.

Теоретическим обоснованием канонического метода структурного синтеза автоматов служит теорема о структурной полноте:


Для правильной работы схем сигналы на входе запоминающих элементов не должны непосредственно участвовать в образовании выходных сигналов, которые по цепям обратной связи подавались бы в тот же самый момент времени на эти входы. Поэтому запоминающими элементами должны быть не автоматы Мили, а автоматы Мура. Таким образом, структурно полная система элементарных автоматов должна содержать хотя бы один автомат Мура. В то же время, для синтеза автоматов с минимальным числом элементов памяти, необходимо в качестве таких элементов выбирать автоматы Мура, имеющие полную систему переходов и полную систему выходов – полные автоматы.

Полнота системы переходов означает, что для любой упорядоченной пары состояний автомата найдётся входной сигнал, переводящий первый элемент этой пары во второй, т.е в таком автомате в каждом столбце таблицы переходов должны встречаться все состояния автомата.

Полнота системы выходов автомата Мура состоит в том, что каждому состоянию автомата поставлен в соответствие свой особый выходной сигнал, отличный от выходных сигналов других состояний. Т.о. в таком автомате число выходных сигналов равно числу состояний автомата. В связи с этим, в автоматах памяти будем использовать одни и те же обозначения и для состояний, и для выходных сигналов.

Канонический метод структурного синтеза предполагает представление структурной схемы автомата в виде двух частей: памяти и комбинационной схемы.

Память состоит из элементарных автоматов Мура П1,....,ПZ,....,ПR. После выбора элементов памяти каждое состояние синтезируемого автомата А кодируется набором их состояний. Если все автоматы П1...,ПR одинаковы, что в общем случае необязательно, то их число

где M – число состояний синтезируемого автомата А, а b – число состояний элементарного автомата памяти. Обычно для элементарного автомата b=2, тогда .

Например, переход автомата А, имеющего 5 элементов памяти, алфавит состояний которых – двоичный, из одного состояния (Am)=01011 в другое (A3)= 11000, заключается в изменении состояний соответствующих автоматов памяти: первый элемент памяти переходит из 0 в 1, второй – из 1 в 1, третий из 0 в 0, четвёртый – из 1 в 0, пятый - из 1 в 0.

Переходы автоматов памяти, соответствующие переходам в автомате А, происходят под действием сигналов возбуждения памяти, поступающих с выхода комбинационной схемы на вход памяти автомата. Так на рисунке X=(X1,X2,..,XL) и Y=(Y1,Y2,...,YN) – векторные структурные входной и выходной сигналы автомата, U=(U1,U2,...,UT) – векторная функция возбуждения памяти и Q=(Q1,...,QT) – вектор выходного сигнала обратной связи от элементов памяти автомата.

Рассмотрим отдельно элемент памяти Пz, таблица переходов которого дана в таблице. Множество выходных сигналов элементов памяти совпадает с множеством внутренних состояний.


Полнота переходов очевидна из таблицы (в каждом столбце все состояния встречаются). При рассмотрении автомата на абстрактном уровне его можно представить в виде рис.22 а.

При переходе от абстрактного автомата к структурному, входные и выходные сигналы должны быть закодированы наборами сигналов структурного алфавита (входного или выходного соответственно). При двоичном структурном алфавите автомат Пz будет иметь два входных и два выходных канала.

Характеристики

Тип файла
Документ
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6944
Авторов
на СтудИзбе
265
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}