109637 (708466), страница 3
Текст из файла (страница 3)
Грибы, разрушающие древесину, подразделяются на четыре группы:
1.Грибы бурой гнили- принадлежат к подотделу базидиомицетов, разрушают, главным образом, полисахариды древесины.
2.Грибы белой гнили- - принадлежат к подотделу базидиомицетов, разрушают, главным образом, лигнин, однако способны разрушать полисахариды.
3.Грибы мягкой гнили- сумчатые и несовершенные грибы, разрушают полисахариды и лигнин.
4.Грибы синевы- сумчатые и несовершенные грибы, живут, главным образом, за счет остаточных белков паренхимных клетках. Ограничено разрушают полисахариды.
5.Бактерии- способны разрушать полисахариды и лигнин, однако, их морфологические свойства (колониальный рост) не позволяет им выступать в качестве высоко эффективных деструкторов при твердофазной ферментации.
Таким образом, наиболее перспективными для отбора ПАУ-разрушающих штаммов являются грибы белой и мягкой гнили (базидио- и аскомицеты). Рассмотрим влияние их ферментных систем на природные ароматические вещества.
4.2.1.Воздействие грибов белой гнили
Грибы белой гнили вырабатывают различные ферменты, способствующие усвоению лигнина /34/. Некоторые из грибов дают, преимущественно, лакказу, другие пероксидазу и тирозиназу. Процесс выработки ферментов различен в зависимости от того используется фермент внутри или вне гиф.
У всех видов диких грибов обнаружена комбинированная деструкция всех компонентов древесины. Обнаружен фермент, который нуждается в целлобиозе (продукте разложения целлюлозы) для деструкции лигнина при совместном действии с локказой /15/.Этот фермент был назван целлобиозохиноноксиредуктазой. В дальнейшем было показано, что для разложения лигнина грибом Phanerohaete chrisosporium.(синоним Sporotrichum pulverolentum) наличие целлобиозохиноноксиредуктазы не является необходимым. Наличие же лакказы абсолютно необходимо. Мутант гриба, не вырабатывающий этой фенолоксидазы, не способен разрушать лигнин.
Изменение в лигнине под воздействием грибов белой гнили заключается в увеличение содержания карбонильных и карбоксильных групп. Отношение О/С увеличивается, а Н/С понижается. Увеличение содержания кислорода происходит в результате окисления a-углеродных атомов и окислительной деструкции связей между b- и g-углеродными атомами пропановой цепи. В опытах с меченным (14С) лигнином показано, что при действии грибов белой гнили (Coriolus versicolor, Phanerohaete chrysosporium) конечный продукт метаболизма СО2 образуется главным образом из метоксильных групп и в небольшой степени из углерода пропановых цепей и ароматических колец. Далее осуществляется окислительное расщепление b-О-4,b-5, b-1 и b-b связей. При этом получаются мономерные звенья лигнина, которые далее разрушаются посредством раскрытия ароматического кольца. Однако, ароматические кольца могут расщепляться и в полимере лигнина /15/.
4.2.2.Воздействие грибов мягкой гнили
Грибы мягкой гнили вырабатывают ферменты, разрушающие все компоненты древесины. Деструкция лигнина грибом Chaetomium globosum до общей потери массы древесины 12% заключается в деметилировании. С увеличением потери массы происходит дальнейшее разложение лигнина. Исследования показали, что при этом не происходит накопление ароматических соединений, следовательно грибы мягкой гнили разрушают ароматические кольца и в самом лигнине и в продуктах.
4.2.3.Действие бактерий
Способность различных бактерий разрушать мономеры и предшественники лигнина показано в опытах с модельными соединениями /35,36/. Однако, в силу морфологических особенностей бактерии не способны эффективно разлагать его полимерные формы.
Исследования по разрушению ПАУ почвенными бактериями показали, что псевдомонады являются наиболее эффективными деструкторами этих соединений. Исследования показали, что ПАУ эффективно разлагаются псевдомонадами в условиях глубинной и твердофазной ферментации, в ризосфере растений /37/.
Исследования механизмов деструкции ПАУ (фенантрена) культурой Pseudomonas fluorescens показали /4/, что окисление ПАУ бактериями происходит последовательно, то есть ферментная атака направлена только на одно кольцо(Рис.5.).
Рис.5.Механизм деструкции фенантрена
Способность разрушать природные ароматические вещества натолкнула исследователей на мысль об использовании микроорганизмов для разрушения ароматических и полиароматических веществ- отходов химической индустрии. В 1990 году американские исследователи показали, что разрушающие лигнин грибы белой гнили Phanerohaete chrysosporium способны также разлагать полициклические ароматические углеводороды до СО2 /38/. Была так же показана способность бактериальных штаммов разлагать ПАУ /39/. В настоящее время работы по микробной деструкции ПАУ ведутся, практически, во всех развитых странах. Показано /40/, что деструкция ПАУ идет последовательно и начинается с гидроксилирования только одного ароматического кольца (рис.6.).
Рис.6.Гидроксилирование бензольного кольца. Упрощенная схема микробной деструкции нафталина
Таким образом простые ПАУ должны разлагаться микроорганизмами гораздо быстрее чем такие ПАУ как пирен, хризен, 3,4бензпирен и другие. В соответствии с правилом последовательного окисления только одного ароматического кольца при деструкции смеси ПАУ должно происходить накопление полиядерных веществ, разрушение которых требует длительных сроков инкубации. Правило последовательного окисления действует для различных видов микроорганизмов.
5.Цели и задачи исследования
Целью работы является изучение процессов биодеградации смеси вредных ПАУ микроорганизмами, разрушающими древесину и создание на их основе высокоэффективных штаммов-деструкторов указанных соединений.
Задачи исследования сводятся к:
1)Поиску в коллекциях и выделению из природных биоценозов микроорганизмов-деструкторов вредных веществ и отбор наиболее активных штаммов;
2)Адаптации штаммов к условиям культивирования (масштабирование процесса);
3)Изучению процессов разрушения многокомпонентной смеси ПАУ в условиях твердофазной ферментации;
4)Изучению фотолиза ПАУ.
6.Патентный поиск
Поиск патентной информации проводился на базе фундаментальной библиотеки СПбГТИ(ТУ), объединенной библиотеки ВИЗР и ВНИИСХМ, библиотеки АН, а также Российской Национальной библиотеки. Поиск осуществлялся по следующим направлениям: штаммы-деструкторы ароматических экотоксикантов, питательные смеси для очистки загрязненных почв, аппаратурное оформление процессов компостирования твердых отходов, методы предобработки отходов. По данным направлениям обнаружена следующая инормация:
1.Штамм актиномицетов Streptomyces rochei, осуществляющий полное разложение 2,4,6-трихлорфенола или 2,4-дихлорфенола или 2,6- дихлорфенола, или 2-хлорфенола: А.с. 1652335 СССР, МКИ5 С12 N 1/20, С12 S 13/00/ Головлева Л.А., Заборина О.Е., Перцова Р.Н., Евтушенко Л.И.; Ин-т биохимии и физиол. микроорганизмов АН СССР.- № 4696431; Заявл. 08.06.89; Опубл. 30.05.91, Бюл. № 20.
2.Методы и установка для [проведения] аэробного ферментативного, в частности, для компостирования органических материалов. Verfahren und Vorrichtung zur aeroben, fermentativen Hydrolyese, insbesondere zur Kompostierung vor organischen Stoffen: Заявка 3925905 ФРГ, МКИ5 С12М 1/02, СО5F 9/04/ Hofmann Hermann, Schnorr Karl Ersnt.-№ 3925905.6; Заявл. 04.08.89; Опубл. 28.02.91.
3.Фотолитически усиленное микробное разрушение [веществ] загрязняющих окружающую среду. Photochemically enhanced microbial degradation of enviromental pollutants: Пат. 5342779 США МКИ5 ВО9В 3/00, D06Н 16/00/ Matsumura Fumio, Katayama Arata; The Regents of the University of California.- №687368; Заявл.18.04.91; Опубл. 30.08.94; НКИ 453/262.5.
4.Улучшенная смесь питательных соединений для биологической очистки загрязненых почв и вод. Verbesserte Nahrstoffgemische fur die Bioremediation verschmutzter Boden und Cewasser: Заявка 4228168 ФРГ, МКИ5 С12N 1/26, С12S 9/00/ Kopp-Holtwiesche Bettinna, Weiss Albricht; Henkel KGaA.-№ 4228168.7; Заявл. 25.08.92; Опубл. 03.03.94.
5.Штамм бактерий - деструктор фенола, бензола и их галогензамещенных аналогов: Пат. 2041943 Россия, МКИ6 C12N 1/12, CO2F 3/34/ Зайцев Г.М., Ивойлов В.С; Суровцева Э.Г.; Науч.-произв. предприятие Биотехинвест. - №92014789/13; Заявл. 28.12.92; Опубл. 20.08.95, Бюл. № 23.
7.Экспериментальная часть
7.1.Материалы и методы
7.1.1.Материалы
7.1.1.1.Штаммы микроорганизмов
В нашей работе были использованы штаммы мицеллиальных грибов любезно предоставленные Ю.С.Оследкиным (ВНИИСХМ, г.Пушкин).
В таблице №1 приводится список видов и номера штаммов, а также указывается доступная информация об источнике их происхождения (организации и/или географическом и/или экологическом происхождении).
таблица 1
№п/.п | название штамма | коллекционный/ музейный номер штамма | источник |
1 | Trichoderma linorum | 32 | ARRIAМ |
2 | Trichoderma linorum | 37 | ARRIAM |
3 | Trichoderma linorum | 48 | ARRIAM |
4 | Chaetomium elatum Kunze:Fris 1817 | 341 | СПбГУ |
5 | Chaetomium bainieri Munk 1957 | 344 | СПбГУ |
6 | Chaetomium funicolum Cooke 1873 | 347 | СПбГУ |
7 | Chaetomium coclioides Palliser 1910 | 491 | Укр.ИСХМ |
9 | Coriolus versicolor (L.1753:Fr. 1821) Quelet 1888 | 330 | ВИЗР |
10 | Fusarium solani (Martius) Sacc 1881 | 464 | Ленинград- ский рег., почва |
11 | Fusarium solani (Martius) Sacc 1881 | 496 | РФ, почва |
12 | Phanerochaete chrysosporium | F-20696 | ATCC |
7.1.1.2.Питательные среды
В работе были использованы следующие питательные среды:
1.Среда Ван-Итерсона /41/, г/л:
NH4NO3 -0,5
KH2PO4 -0,5
полоска фильтровальной бумаги -1x12 см
H2O -1 литр
2.Среда Ван-Итерсона модифицированная /42/:
минеральный состав среды тот же, что и в классическом варианте, полоска фильтровальной бумаги инпрегнированна веществом, для которого отбирается штамм-деструктор содержание вещества составляет 5% от массы полоски бумаги
3.Среда Чапека /41/, г:
KH2PO4 -1,0
NaNO3 -3,0
KCl -0,5
MgSO4.7H2O -0,5
FeSO4.7H2O -0,01
H2O -1 литр
4.Среда Чапека с сахарозой/41/:
Минеральный состав без изменений, добалено 30 г/литр сахарозы
5.Сусло пивное неохмеленное /41/:
Неохмеленное пивное сусло разводится в два раза водопроводной водой и стерилизуется
Для получения твердых питательных сред добавляли 2 г/литр агар-агара.