MODELIRKURS (708405), страница 3

Файл №708405 MODELIRKURS (Математическое моделирование при активном эксперименте) 3 страницаMODELIRKURS (708405) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Необходимо отметить, что получаемая модель не дает членов типа x2ii и, таким образом, является неполной. В большинстве случаев это не отражается на качестве модели, так как чаще всего bii=0. Однако в случаях, когда bii0, модель становится неточной (неадекватной), тогда следует от ПФЭ переходить к другим принципам планирования (как правило, это случается в окрестностях частного или глобального экстремума целевой функции).

После определения оценок коэффициентов регрессии необходимо проверить гипотезу о значимости коэффициентов bi. Лучше всего это сделать в виде нуль-гипотезы, т.е. гипотезы о равенстве bi = 0. Если она подтвердилась, то коэффициент bi следует признать статистически незначимым и отбросить из искомой модели; если гипотеза не подтвердилась, то соответствующий коэффициент bi следует признать значимым и включить в модель.

Проверка гипотезы проводится с помощью t - критерия Стъюдента, который при проверка нуль-гипотезы формируется в виде

(12)

где S2{bi}- дисперсия ошибки определения коэффициента bi. При полном и дробном факторном планировании для всех i

(13)

Если вычисленная величина параметра ti превышает табличное значение tкр, найденное для q%-ного уровня значимости и vз=N(m-1) числа степеней свободы (например для q = 5%; vз = 16; tкр = 2,199, см.табл.П.2) то нуль-гипотеза отвергается и коэффициент считается незначимым и его следует отбросить, не включая в искомую модель.

Статистическая незначимость коэффициента bi может быть обусловлена следующими причинами:

    1. уровень базового режима * близок к точке частного экстремума по переменной Xi или по произведению переменных;

    2. шаг варьирования Xi выбран малым;

    3. данная переменная (или произведение переменных) не имеет функциональной связи с выходным параметром Y;

    4. велика ошибка эксперимента вследствие наличия неуправляемых и неконтролируемых переменных.

Поскольку ортогональное планирование позволяет определять доверительные границы для каждого из коэффициентов регрессии в отдельности, то, если какой-либо из коэффициентов окажется незначимым, он может быть отброшен без пересчета всех остальных. После этого математическая модель объекта составляется в виде уравнения связи выходного параметра Y и переменных xi, включающего только значимые коэффициенты.

Чтобы проверить гипотезу об адекватности представления результатов эксперимента найденному уравнению связи (иными словами, чтобы проверить, насколько найденное уравнение соответствует экспериментальным результатам), достаточно оценить отклонение выходной величины Yg, предсказанное уравнением регрессии, от результатов экспериментов g в точках факторного пространства.

Рассеяние результатов эксперимента вблизи уравнения связи, аппроксимирующего искомую функциональную зависимость, можно охарактеризовать с помощью дисперсии неадекватности 2ад, оценка которой S2ад находится по формуле

(14)

с числом степеней свободы vад = N-d, где d - число членов аппроксимирующего полинома.

Проверка адекватности состоит в выяснении соотношения между дисперсией неадекватности 2ад и дисперсией воспроизводимости 2{Y}. Если 2ад не превышает дисперсии опыта, то полученная математическая модель адекватно представляет результаты эксперимента, если же 2ад> 2{Y}, то описание считается неадекватным объекту.

Проверка гипотезы об адекватности проводится с использованием F-критерия Фишера.

Критерий Фишера позволяет проверить нуль-гипотезу о равенстве двух генеральных дисперсий 2ад и 2{Y}. В связи с тем, что самих генеральных дисперсий мы не знаем, F-критерий формируется как отношение

(15)

Если вычисленное по формуле (15) значение критерия F меньше табличного Fкр, найденного для q%-ного уровня значимости, vчисл = vад = v4 = N-d числа степеней свободы числителя и vзн = vз = N(m-1) числа степеней свободы знаменателя, то нуль-гипотеза принимается. В противном случае она отвергается и описание (модель) признается неадекватным объекту. Некоторые значения Fкр(q=5%;v4;vз) приведены в табл.П.4

В ходе работы может возникнуть ситуация, когда выборочная дисперсия неадекватности S2ад не превосходит оценки дисперсии воспроизводимости S2{Y} (т.е. когда S2адS2{Y}). Тогда соотношение (15) будет равно F1 и неравенство Fкр выполняется для любого числа степеней свободы v4 и v3, т.е. гипотеза 2ад 2{Y} не противоречит выборочным данным и математическая модель адекватно представляет объект.

Проверка адекватности возможна только при vад = v4 > 0. Число вариантов варьирования плана ПФЭ равно числу оцениваемых коэффициентов регрессии уравнения связи (N = d). Следовательно, не остается степеней свободы (vад = 0) для проверки нуль-гипотезы об адекватности представления экспериментальных данных выбранной формой аппроксимирующего полинома. Если же некоторые коэффициенты регрессии оказались незначимыми или ими можно пренебречь в силу их малости, то число членов проверяемого уравнения в этом случае будет меньше числа вариантов варьирования (dад>0) останется для проверки гипотезы адекватности.

Если гипотеза адекватности отвергается, то модель признается неадекватной экспериментальным данным. Неадекватность модели не означает ее неправильности! Неадекватность модели может означать, что не весь перечень влияющих факторов был принят во внимание, или что необходимо перейти к более сложной форме уравнения связи, или выбрать другой шаг варьирования по одному или нескольким факторам и т.п. Однако все достижения неадекватной модели: отсев незначимых факторов, оценка дисперсии эксперимента и др. остаются в силе.

Пример 1. Методом ПФЭ найти математическую модель процесса напыления резисторов.

После консультации с экспертами и некоторых предварительных исследований было определено, что на величину сопротивления напыляемых резисторов могут оказывать влияние следующие факторы:

  1. Состояние испарителя - "чистое", т.е. порошок для напыления сыпется в стакан испарителя впервые после промывки его сторон, или "грязное", т.е. порошок сыпется в испаритель, в котором осталось некоторое его количество от предыдущего цикла напыления; обозначим этот фактор как x1, причем величина x1 = +1соответствует "чистому", а величина x1 = -1 соответствует "грязному" состоянию испарителя;

  2. Температура подогрева подложки x2, причем x2 = +1 соответствует верхней допустимой по техпроцессу температуре, а x2 = -1 - нижней;

  3. Температура испарителя x3, причем x3 = +1 соответствует верхней допустимой по техпроцессу температуре, а х3 = -1 - нижней.

План эксперимента, его пятикратная реализация с учетом рандомизации и первичная обработка результатов представлена в таблице.

номер
строки

g

Циклы

z0

z1

z2

z3

z4

z5

z6

z7

Результаты, кOм

Обработка

Адекватность

g

S2g

g

( g- g)2

k1

k2

k3

k4

k5

x0

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

Yg1

Yg2

Yg3

Yg4

Yg5

1

4

2

3

6

8

+

-

-

-

+

+

+

-

11,4

10,5

13,8

14,0

12,1

12,36

2,303

12,10

0,0676

2

3

3

6

2

5

+

+

-

-

-

-

+

+

18,1

17,4

15,2

16,8

19,2

17,34

2,228

17,08

0,0676

3

8

6

2

4

1

+

-

+

-

-

+

-

+

10,8

9,3

11,6

12,1

9,8

10,72

1,387

10,98

0,0676

4

6

1

7

1

6

+

+

+

-

+

-

-

-

18,8

29,6

22,0

22,8

20,7

21,38

2,752

21,64

0,0676

5

5

8

1

3

4

+

-

-

+

+

-

-

+

12,9

12,8

13,6

15,2

14,0

13,70

0,950

13,98

0,0784

6

2

5

5

7

2

+

+

-

+

-

+

-

-

12,0

11,6

14,2

13,4

12,5

12,74

1,118

13,00

0,0676

7

1

7

4

8

7

+

-

+

+

-

-

+

-

15,1

14,8

16,8

18,1

17,0

16,36

1,913

16,10

0,0676

8

7

4

8

5

3

+

+

+

+

+

+

+

+

13,5

11,9

14,3

17,0

16,2

14,58

4,227

14,32

0,0676

119,18

16,878

-

0,5410

При первичной обработке результатов экспериментов пользуемся формулами (4) и (5), а затем проверяем воспроизводимость опытов по (7)

Характеристики

Тип файла
Документ
Размер
418,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7018
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}