VDV-1399 (708293), страница 7

Файл №708293 VDV-1399 (Книга S.Gran A Course in Ocean Engineering. Глава Усталость) 7 страницаVDV-1399 (708293) страница 72016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

здесь мы не учли предел интенсивности напряжений. В этом случае, зависимость от x будет проявляться только через геометрическую функцию g(x). Уравнение (4.7.89) представляет собой дифференциальное уравнение движения для x, которое может быть, в некоторых случаях, аналитически интегрировано, что даст глубину трещины x как функцию от времени t.

Распределение вероятностей для длины трещины. Основное предназначение теории роста трещин – предсказать размер трещины в момент времени t2, если в момент t1 размер трещины известен. Кроме того, эта теория может быть использована для предсказания срока службы элементов конструкций, как альтернатива методу Палмгрена-Майнера. Когда используется теория роста трещин, необходимо выбрать начальную глубину трещины x0 в момент времени t=0, что часто является причиной погрешностей в оценке ресурса.

Как уже упоминалось во введении к этой главе, микротрещины или похожие концентраторы напряжений всегда присутствуют на металлической поверхности, даже если конструкция новая. Говорилось о начальной глубине 0,1–1 мм. Однако, эта величена наилучшим образом известна в виде функции вероятности. Следовательно, интегральная функция вероятности для глубины трещины будет функцией определяющей положение x и время t. Мы определяем ее как

Вероятность того, что глубина трещины в момент времени t превзойдет значение x, определяется соответствующей вероятностью превышения

В определенный момент времени t=t1, функция F(x,t1) характеризует простую пространственную функцию вероятности для глубины трещины. Соответствующая плотность вероятности будет

С течением времени, при действии случайной нагрузки, интегральная функция вероятности F(x,t) изменится. Она может быть описана уравнением Фокера-Планка так, как это было сделано для в выражении (4.7.56). При этом динамические коэффициенты U, V и W зависят от положения x так же, как это было в (4.7.89). Но влияние естественной дисперсии вызванной V и W, показанное в главе 4.7.4(iii), в многоцикловой усталости незначительно. Следовательно, эти коэффициенты можно не учитывать, оставляя лишь дифференциальное уравнение движения первого порядка. По понятным причинам, это уравнение можно вывести.

С этой целью, мы можем рассмотреть некоторую точку в момент времени t, например точку с вероятностью 75%, что размер трещины превзойдет x. После временного шага dt, эта точка с вероятностью 75% передвинется в глубь материала на расстояние dx=U(x)dt. Однако, до временного шага dt, этой новой точке x+dx соответствовала вероятность превышения отличная от 75% на величину (Q(x,t)/x)dx. Следовательно, мы можем заключить, что локальное временное изменение вероятности превышения, в интервале времени dt будет

Кроме того, это выражение выглядит так же, как искомая вещественная производная по времени от интегральной функции вероятности или вероятности превышения, которая равна нулю, т.е.

Такая же форма записи использовалась в главе 3.1.1 для движения жидкости. Пространственную плотность вероятности определенную в (4.7.92) находят путем дифференцирования (4.7.94) по x, следовательно, она должна удовлетворять уравнению непрерывности

Оно аналогично первому порядку уравнения (4.7.56) и говорит о том, что вероятность изменяется так, как, например, в случае со сжимаемым в трубке газом. Кроме того, для уравнения (4.7.95) соблюдается условие нормировки

для любого момента времени t.

Изменение вероятности перехода Q(x,t) с течением времени в определенном месте x обязательно будет монотонно возрастающей функцией. Она начинается с некоторого начального значения и приближается к единице, когда время стремится к бесконечности. По этой причине, Q(x,t), принятая как функция от t при фиксированном значении x, также определяет распределение вероятности, а именно интегральную функцию вероятности для времени необходимого для того, чтобы трещина достигла точки x. Функция плотности вероятности (x,t), связанная с этим распределением, является производной от Q(x,t) по времени при определенном значении x

Вероятность того, что фронт трещины пересечет точку x во временном интервале [t,t+dt] будет (x,t)dt. Из (4.7.94) следует, что пространственная плотность вероятности (x,t) и временное распределение вероятностей (x,t) связаны между собой выражением

Тогда уравнение непрерывности (4.7.95) для (x,t) можно записать как

при условии, что локальная скорость U=U(x) не зависит от времени. По мере того, как трещина проникает в глубь материала, она пройдет через критическое значение xf, при котором происходит хрупкое разрушение. В этот момент, интегральная функция вероятности по времени, мы ее обозначим как Pf(t), будет равна вероятности того, что глубина трещины превысит xf. Из (4.7.91) следует

это вероятность разрушения – центральная переменная в анализе надежности.

Глава 4.7.6 Распределение вероятностей для ресурса.

Мы рассмотрим некоторые особые решения дифференциального уравнения (4.7.94). Основные входные данные – это распределение глубин начальных трещин в момент времени t=0 и геометрическая функция g(x) в уравнении скорости роста трещины U(x) в (4.7.89). Мы допускаем, что предел усталости равен нулю.

Начальное состояние. Основная задача – найти распределение вероятностей для ресурса (4.7.100), чтобы можно было определить математическое ожидание ресурса и погрешность возникшую из-за неизвестных начальных размеров трещины. Для этого, мы можем принять, что распределения глубин начальных трещин соответствует распределению Вейбулла с вероятностью превышения

Математическое ожидание E[x] размера начальной трещины

и среднеквадратическое отклонение

Часто используется экспоненциальное распределение, =1. Однако, если предполагается, что на поверхности есть множество мелких дефектов, то доминирующая трещина будет определяться исходя из наибольшего дефекта. В этом случае, ожидается, что начальное распределение будет более островершинным, т.е. больше единицы. Часто, для морских судов и прибрежных конструкций принимаются поверхностные дефекты порядка x0=0,1 мм.

Далее мы ограничимся случаями, где x и t объединены в одну переменную xi=xi(x,t) так, что значение xi в момент времени t=0 соответствует начальной глубине трещины. В таком случае, вероятность превышения Q(x,t) является функцией только от xi

Интегральную функцию распределения Pf(t) получают путем подстановки xi вместо x в (4.7.101). Выраженное через xi, уравнение непрерывности становится

со средней скоростью роста трещин

Мы используем скорость роста U в явном виде, как это дано в (4.7.89). Обычно, это функция от текущего размера трещины x, введенного через геометрическую функцию g(x).

Постоянная скорость роста. В самом простом случае, скорость роста трещины постоянна и она не зависит от размеров трещины. Мы можем записать

Функция вероятности для глубины трещины x будет равномерно сдвигаться вдоль оси x без изменения формы. Согласующаяся с начальным распределением (4.7.101), интегральная функция распределения по времени до разрушения будет

Это трехпараметрическое распределение Вейбулла. Математическое ожидание ресурса

а среднеквадратическое отклонение

В методе Палмгрена-Майнера для этого решения применяется линейный коэффициент использования , т.к. предполагалось, что движение равномерное. Также, существуют особые области в трубных соединениях, где из-за геометрических особенностей рост трещин почти равномерный.

Линейный рост трещин. Мы можем рассмотреть особый случай, когда скорость роста трещины пропорциональна ее размеру, т.е.

Такое может быть, если геометрическая функция со штрихом g(x) в (4.7.84) постоянна и если параметр наклона m в da/dN кривой равен 2. В этом случае, переменную xi можно определить как

которая удовлетворяет (4.7.106). Подставленная в начальную функцию вероятности (4.7.101), она дает интегральную функцию распределения по времени до разрушения

Сравнение с (4.2.6) показывает, что теперь усталостный ресурс имеет двумерное экспоненциальное распределение. От характера распределения зависит наиболее вероятный, т.е. характеристический, ресурс tc

Согласно (4.2.16), математическое ожидание ресурса

и согласно (4.2.17), среднеквадратическое отклонение

Характеристики

Тип файла
Документ
Размер
573,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6963
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}