VDV-1399 (708293), страница 6

Файл №708293 VDV-1399 (Книга S.Gran A Course in Ocean Engineering. Глава Усталость) 6 страницаVDV-1399 (708293) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Параметры и даны точно в (4.7.41) и (4.7.45). Выраженные непосредственно через статистические моменты M1(xi) и M2(xi) отдельного скачка xi, взятые из (4.7.41) и (4.7.42), те же переменные будут

Если m=3 и размахи напряжений распределены экспоненциально, то L=20 и p=1/20. Это значит, что по методу сопряженных случайных блужданий коэффициент использования возрастет случайно в среднем один раз в двадцать циклов, кроме того, он возрастает скачком в течение одного цикла.

В методе случайных блужданий асимметрия не учитывается. Он соответствует упрощенному уравнению Фоккера-Планка второго порядка, в котором опущен параметр W.

Глава 4.7.5 Метод механики разрушения

Происхождение трещин и особенности напряженного состояния. Усталость в металлах имеет физическую основу, которая достаточно хорошо изучена. Первопричины находятся на субмикроскопическом уровне структуры материала. На этом уровне все металлы имеют монокристаллическую структуру, но с некоторыми несовершенствами в виде вакансий и дислокаций. Состояние вокруг дислокации такое же, как на конце незаконченного ряда зерен на кукурузном початке. В металлах высокой чистоты, линии дислокаций можно увидеть в электронный микроскоп.

В поле напряжений, которое вызвано в кристаллической решетке внешними силами, дислокации могут взаимодействовать и передвигаться. Предпочтительным результирующим движением является сдвиг или скольжение кристаллических слоев относительно друг друга, наибольшая чувствительность к нагрузке обнаружена при 45. Движение дислокаций направлено на восстановление геометрически правильной кристаллической решетки. Во время этого процесса, линии дислокаций обязательно будут двигаться к поверхности кристалла, где их можно увидеть как микроскопические полоски, т.е. полосы скольжения. Соседние полосы скольжения образовывают волнистую поверхность, на которой канавки действуют как центры зарождения микротрещин распространяющихся вдоль межкристаллитных границ. Эти трещины будут наиболее чувствительны к компонентам напряжений направленным под углом 90 к поверхности трещины, под действием циклических нагрузок, они будут расти скачкообразно. Они обычно идут с поверхности в глубину металла и если к образцу приложено слабое растягивающее усилие, их можно увидеть как маленькие надрывы.

Факт раскрытия трещин при низких напряжениях указывает на то, что еще может быть использована линейная зависимость между деформациями и напряжениями. Элементы тензора напряжений можно рассматривать непрерывные функции от времени и расстояния. Но на микроскопическом уровне, эта ровная и непрерывная картина нарушается микротрещинами, вершины которых проявляются как небольшие местные сингулярности (особые точки или области) в непрерывном поле напряжений.

В частности, мы можем рассмотреть небольшую плоскую трещину идущую с поверхности. Распределение местных напряжений можно описать в локальной системе координат, где оси x и z перпендикулярны линии фронта трещины, как это показано на рис. 4.7.9.

Рис. 4.7.9 Координаты описывающие зависимость между локальными деформациями и напряжениями у фронта трещины.

Выражая линейное уравнение связи деформаций и напряжений в полярных координатах (r,) и допуская, что эти переменные независимы, компоненты локальных напряжений можно записать как

Это решение аналогично описанию неполных круговых волн (circular partial waves) в (3.5.8). На поверхностях трещины, положение которых определяется =, как нормальные напряжения, так и касательные должны быть равны нулю. Параметр, описывающий напряжения, который объясняет это требование, должен иметь радиальную функцию вида

где n – величина равная нулю или целому числу. В большинстве случаев, n необходимо опустить, т.к. получается либо бесконечное напряжение на больших расстояниях, либо бесконечные деформации в области фронта трещины. Реальным значением будет n=1, которое дает сингулярность у фронта трещины порядка -1/2. Для этого значения компоненты напряжений можно записать в виде

здесь,  это нормированный множитель, введенный для удобства. Коэффициентом K, общим для всех компонент напряжений, обозначают интенсивность напряжений. Он зависит от формы трещины и ориентации тензора номинальных напряжений. Он, также, пропорционален преобладающей компоненте номинального напряжения, которая здесь будет обозначена через .

В некоторых особых случаях, интенсивность напряжений K может быть выведена аналитически с помощью интегрирования комплексной функции. Для длинной плоской трещины в металлической пластине длиной 2x, перпендикулярной продольным напряжениям, компоненты местных напряжений (4.7.80) будут

Следовательно, даже если номинальные напряжения малы, компоненты местных напряжений ij у фронта трещины при r=0 могут быть чрезвычайно высокими. Они могут быть даже выше, чем прочность материала на разрыв.

Эта неоднородность в поле напряжений может привести к разрушению материала в очень малой области около вершины трещины и, т.о., увеличить эту трещину. Однако если напряжения малы, такая неоднородность будет сведена на нет когда фронт трещины проходит расстояние сравнимое с размером зерна. С другой стороны, если напряжения большие, неоднородность в поле напряжений не уравновешена, и трещина развивается до начала лавинообразного разрушения, которое протекает примерно со скоростью звука.

Рост трещин. Основным предположением, при использовании механики разрушения для объяснения усталости, является то что, рост трещин связан с изменениями интенсивности напряжений K. Цикл напряжений определяет максимум Kmax и минимум интенсивности напряжений Kmin, при этом размах интенсивности напряжений

Предположительно, этот цикл увеличит трещину глубиной x на небольшую величину x:

Это выражение известно как закон роста трещин Париса-Эрдогана. C, m и K0 – это эмпирические постоянные, полученные в результате лабораторных испытаний, они представлены на диаграммах, как это показано на рис. 4.7.10. Этот вид диаграмм практически аналогичен диаграмме Велера в методе Палмгрена-Майнера. Кривую или диаграмму можно назвать da/dN кривой, обозначая, тем самым, увеличение длины трещины a за цикл. Длина трещины a служит для описания полуэллиптической трещин, где a и b обозначают длинную и короткую полуоси. а – описывает глубину трещины, а 2b – это раскрытие трещины.

Интенсивность напряжений прямо не учитывается. Поэтому, лабораторные измерения проводят на образцах имеющих трещину такого типа, для которой известны соотношения между номинальными напряжениями и интенсивностью напряжений. Рост трещины можно измерить, усредняя по необходимому числу циклов.

Т.к. кривая роста трещины связана лишь с материалом, а не с конкретными геометрическими особенностями, то образец может быть маленьким, а частота нагружения высокой, часто в звуковом диапазоне частот. Проводя измерения на одном образце, за короткое время можно получить несколько точек на da/dN кривой. Диаграмма Велера, напротив, связана как с материалом, так и с формой, и для того, чтобы получить всего лишь одну точку на этой кривой, необходимо испытать один образец до разрушения. К тому же, большие образцы должны быть испытаны при низкой частоте, поэтому одно испытание может длиться несколько дней или недель. Т.о., с лабораторной точки зрения, анализ роста трещины более предпочтителен, чем классические испытания на усталость.

Как и в (4.7.81), существует линейное соотношение между размахом интенсивности напряжений K и размахом преобладающих напряжений . Исключив возможный коэффициент концентрации напряжений, он может быть равен размаху номинальных напряжений, т.е. двойной амплитуде, которая ранее была обозначена через S. Для того чтобы учесть возможное влияние формы образцов, выражение (4.7.81) можно записать в более общем виде:

В этом соотношении, g(x) – локальная геометрическая функция, которую можно вычислить аналитически или численно с помощью линейного анализа напряжений. Справочник таких функций есть в нескольких работах по механике разрушения, например в книге /11/. Член входит в состав геометрической функции для выражения этой функции без штриха g(x), далее ей будет отдано предпочтение. Подстановка (4.7.84) в (4.7.83) дает увеличение размера трещины:

Теперь, процесс усталости может быть описан как скачкообразное распространение трещины в материале

Рис. 4.7.10 Пример диаграммы роста трещины или da/dN кривой, полученной в результате лабораторных испытаний. Безразмерный параметр наклона m соответствует параметру наклона в диаграмме Велера, классическое значение m=3.

Рассматривая весь срок службы элемента, начальная глубина трещины x0 будет связана с микротрещинами, упомянутыми выше, а конечная длина xf будет достигнута при разрушении материала. Формально, глубина трещины может определять коэффициент использования , возрастающий скачками :

Подставленный в (4.7.37), он равен росту коэффициента использования в теории Палмгрена-Майнера, но длина скачков  явно зависит от текущего значения или x.

Размах номинальных напряжений S в (4.7.85) такой же, как в (4.7.39). Можно считать, что он имеет функцию плотности вероятности (4.7.1) для короткого отрезка времени и (4.7.7) в случае большого интервала. Длина скачка x имеет статистическое распределение согласно гамма распределению, усеченному при напряжениях соответствующих пределу K0. Использование статистического распределения размахов напряжений (4.7.7) дает ожидаемую, т.е. среднюю длину скачка

Если мы не учитываем предел интенсивности напряжений K0, то неполная гамма функция превратится в полную. Для простоты, далее мы используем это допущение. Кроме того, длина отдельного скачка x, будет иметь стандартное отклонение и асимметрию повышающую естественную дисперсию роста трещины. Формулы могут быть получены аналогично уравнениям (4.7.41) – (4.7.46).

В отличие от изменения абстрактного коэффициента использования , продвижение трещины описывает физический процесс. Часто, скачки можно физически увидеть как набор линий или полосок на поверхности излома. Трещина распространяется с некоторой скоростью, обозначенной U. Если T, как и раньше, обозначает средний период напряжений, то фронт трещины продвигается со средней скоростью

Характеристики

Тип файла
Документ
Размер
573,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6979
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее