VDV-1399 (708293), страница 5

Файл №708293 VDV-1399 (Книга S.Gran A Course in Ocean Engineering. Глава Усталость) 5 страницаVDV-1399 (708293) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Распределение вероятностей длины скачка =xi имеет характеристическую функцию (s), определенную в общем виде в (2.4.8) как

где s, в общем, может быть комплексным параметром. Разложение экспоненты в интеграле в ряд даст

Почленно интегрируя по xi и учитывая выражения (4.7.41) – (4.7.44) получим

Говоря физическим языком, отдельные вклады xi в коэффициент использования, которые вносятся напряжениями вызванными волнами, обычно довольно-таки нерегулярны. Если размах напряжений распределен экспоненциально, что часто бывает в морских конструкциях, то отдельный вклад xi для m=1 имеет среднеквадратическое относительное отклонение =4,36 и коэффициент асимметрии =19,6. Следовательно, функция плотности вероятности для отдельных приростов коэффициента использования очень широкая и в значительной степени асимметричная.

Уравнение движения для коэффициента использования. Коэффициент использования в момент времени t описывают при помощи функции плотности вероятности (,t). Соответствующую характеристическую функцию обозначим через (s,t), где s – такая же переменная, как и в (4.7.48). Ее получают с помощью преобразования плотности вероятности (,t)

Позже, эта характеристическая функция будет использована для вывода дифференциального уравнения в частных производных для (,t).

Теперь, если коэффициент использования после n циклов напряжений обозначен через n, как в (4.7.38), то коэффициент использования одним периодом позже будет

Согласно гипотезе Палмгрена-Майнера, вклад xi не зависит от предыдущих вкладов, так, что n и xi статистически независимы. В связи с этим, характеристические функции перемножаются, как это установлено правилом C в главе 2.4.2(iii). Т.к. эти функции уже определны в выражениях (4.7.50) и (4.7.47) соответственно, то характеристической функцией для распределения вероятностей в момент времени t+T будет

Коэффициент использования увеличивается скачкообразно и нерегулярно. Следовательно, он не имеет непрерывной скорости изменения, хотя можно вывести ее среднее значение из скорости роста U в (4.7.41). Тем не менее, можно считать, что функция вероятности (,t) и характеристическая функция (s,t) изменяются во времени непрерывно. Т.о., мы можем найти производную характеристической функции по времени на примере изменения через один цикл напряжений T

Левую часть выражения можно заменить на производную (4.7.50) по времени, тогда как в правую часть можно подставить (4.7.52) и (4.7.49).

Если мы рассматриваем (s,t) в качестве преобразования Лапласа (Laplace) по , который входит в плотность вероятности (,t), то члены вида sj(s,t) в (4.7.54) будут определены как преобразование Лапласа производных от (,t) по . Формально, его можно вывести с помощью трех последовательных интегрирований по частям правого интеграла из (4.7.50). Подставленное в (4.7.54) оно даст

Первым необходимым условием для всех и t в этом соотношении является то, что функция плотности вероятности должна удовлетворять дифференциальному уравнению в частных производных

Это уравнение Фоккера-Планка третьего порядка (посмотрите работу /10/), которое включает смещение, рассеяние и асимметрию. Данное уравнение количественно описывает поведение функции вероятности с течением времени. Три коэффициента U, V и W заданы в (4.7.44) и могут быть вычислены на основе параметров распределения вероятностей и данных по S-N кривых.

Однако, что бы (4.7.56) было полным решением, для граничных членов во второй строке (4.7.55) необходимо, что бы (,t) и его первые две производные по , были равны нулю при =0 и =. Т.к. функция плотности вероятности (4.7.40) длин отдельных скачков xi может быть равна бесконечности при xi=0, то (,t) также может быть первоначально равна бесконечности. По этой причине, одно уравнение Фоккера-Планка (4.7.56) не всегда может достаточно полно описать первый этап развития усталости.

Моменты и приближенные решения. Помимо уравнения Фоккера-Планка (4.7.56), можно получить достаточно хорошие данные по усталостному распределению вероятностей (,t) учитывая моменты.

Как установлено выше, мы можем рассматривать длины скачков в сумме (4.7.38) как статистически независимые. Согласно правилу C в параграфе 2.4.2(iv), три первых центральных момента складываются. Т.е. среднее значение и два первых центральных момента коэффициента использования после n циклов будут

Т.о., среднеквадратическое отклонение, также как и момент третьего порядка коэффициента , будет расти с увеличением n. Среднеквадратическое отклонение величины относительно математического ожидания будет

где  это относительна дисперсия каждого отдельного скачка, определенная в (4.7.45). Таким же образом, показатель асимметрии коэффициента использования после n циклов

где  основная асимметрия (4.7.46) в отдельных скачках. Т.о., как относительная дисперсия, так и показатель асимметрии уменьшаются с течением времени и ростом n. В зависимости от значения показателя асимметрии 3, функция вероятности (,t) может быть приблизительно найдена с помощью стандартных распределений.

Когда асимметрия становиться меньше двух, т.е. 32,0, распределение вероятностей (,t) для может быть представлено экспоненциальным гамма распределением с плотностью (4.2.21). Это имеет место для размахов напряжений распределенных экспоненциально и m=3 при n96 циклов. Функцию плотности вероятности можно записать

Параметры a, h и u (не путать с параметрами (4.7.1)) можно найти из моментов, как это показано в главе 4.2.2.

Сначала, из уравнения (4.2.32) определяют форму или параметр асимметрии a как решение уравнения

Затем, находят параметр дисперсии h, так же как в (4.2.33), т.е.

Наконец, параметр распространения u вычисляют из (4.2.34)

-функции – это поли-гамма функции, они представлены в приложении B.

Когда время проходит и асимметрия становится еще меньше, например 30,4, для поли-гамма функций можно использовать некоторые асимптотические формулы. Для экспоненциальных распределений размахов напряжений это происходит при n2400. Параметры экспоненциального гамма распределения a, h и u можно вычислить по более простым формулам

Если асимметрия 3 становится еще меньше, то распределение коэффициентов использования (,t) можно представить функцией нормального распределения вероятностей. Плотность вероятности можно записать

Для числа циклов n=9600, в случае экспоненциального распределения размахов напряжений, асимметрия 3=0,2. В большинстве случаев, это пренебрежимо малая величина так, что можно использовать функцию плотности нормального распределения вероятностей. Следовательно, функция нормального распределения вероятностей (4.7.69) достаточна при решении большинства задач по многоцикловой усталости. Но для малоцикловой усталости со случайным нагружением, значение прогнозируемого ресурса может быть полностью скрыто естественной дисперсией.

Модель случайного блуждания. Понятие о естественной дисперсии в усталости может быть, также, получено с помощью в некоторой степени искусственной, но поучительной модели случайного блуждания. Этот способ можно сформулировать следующим образом:

  • Коэффициент использования растет скачкообразно, эти скачки имеют определенную длину L.

  • Для каждого цикла напряжений существует определенная вероятность p того, что сделает один шаг вперед, а также вероятность (1-p) того, что он останется неизменным.

  • Вероятность скачка в одном цикле не зависит от предыдущих скачков.

Данное значение коэффициента использования определяют после j скачков, а именно

Однако, эти скачки будут появляться нерегулярно. Вероятность того, что в течении nj циклов коэффициент использования будет иметь j скачков, задана функцией вероятности биномиального распределения

Для краткой иллюстрации этого метода, рассмотрим особый случай, когда вероятность возрастания в течение цикла равна 50% и вероятность того, что он останется прежним так же 50%

Это делает вероятность (4.7.71) равной

Для первых циклов, распределение вероятностей показано на рис. 4.7.8, его легко определить по таблице биномиальных коэффициентов.

Рис. 4.7.8 Зависимость функции вероятности коэффициента использования от числа циклов, для случая p=(1-p)=0,5.

Очевидно, что после нескольких циклов, (дискретное) распределение вероятностей образует блоковое множество определенной ширины. За каждый цикл, вершина этого множества делает шаг вперед, ширина его также увеличивается.

В общем случае выражения (4.7.71), среднее значение и расхождение коэффициента использования после n циклов равны соответственно

Следовательно, относительная дисперсия после n циклов

Сравнивая это выражение с уравнениями (4.7.57) и (4.7.60), можно сделать вывод, что, когда математическое ожидание длины одного скачка и относительная дисперсия известны, параметры случайного блуждания L и p будут

Характеристики

Тип файла
Документ
Размер
573,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6979
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее