diplom (708208), страница 2
Текст из файла (страница 2)
По физической и химической стойкости в течение длительного времени различают топлива длительного хранения или стабильные, и топлива кратковременного хранения. Компоненты стабильных топлив имеют при максимальной температуре в условиях эксплуатации или хранения давление насыщенного пара ниже допустимого по условиям прочности баков, обладают стабильностью физико-химических свойств в течение заданного времени и допускают хранение в баках ракеты или других емкостях при эксплуатационных температурах и давлениях без существенных потерь.
Задание.
Однокамерный ЖРД
Начальная масса m0 = 13 000 кг
Конечная масса m1= 1 300 кг
Тяговооруженность b0 = 1,1
Давление в КС poc = 8,8 МПа
Геометрическая степень расширения сопла = 600
Топливо:
О2+ ……. Стабильное горючее (НДМГ).
3. Расчет размеров камеры и действительных параметров двигателя.
Расчет геометрии камеры ЖРД
ТОПЛИВО: О2ж+ НДМГ
Тяга камеры 140.000 кН
Давление на входе в сопло 8.80000 МПа
Удельный импульс 3518.0514 м/с
Расходный комплекс 1729.9965 м/с
Массовые расходы:
окислителя 25.739801 кг/с
горючего 14.291759 кг/с
Параметры камеры сгорания:
а) Общие:
Коэффициент камеры сгорания 0.9800000
Относительная расходонапряженность 1.0000000 с/м
Время пребывания 0.002000 с
Относительная площадь поперечного сечения 5.7803584
Радиус 0.1273693 м
Длина 0.2004792 м
Объем 0.0049648 м3
Радиус скругления R1 0.1018954 м
Радиус скругления R2 0.0794655 м
б) В ядре потока:
Коэффициент избытка окислителя 0.9500000
Идеальный удельный импульс 3678.0345 м/с
Идеальный расходный комплекс 1772.2600 м/с
Идеальная температура 3863.0800 К
Молекулярная масса 25.337700 г/моль
Массовые расходы:
окислителя 23.841951 кг/с
горючего 11.752583 кг/с
в) В пристеночном слое:
Коэффициент избытка окислителя 0.15000000
Относительная доля горючего 0.2000000
Идеальный удельный импульс 2782.8400 м/с
Идеальный расходный комплекс 1400.1200 м/с
Массовые расходы:
окислителя 1.6978500 кг/с
горючего 2.8391759 кг/с
Параметры сопла:
-
Коэффициент сопла 0.9800000
-
Показатель изоэнтропы расширения на срезе 1.1230300
-
Геометрическая степень расширения 48.611800
Радиус скругления R3 0.0264885 м
Радиус минимального сечения 0.0529770 м
Половина угла раствора конического участка
сужающейся части сопла 7.0000000 рад
Коэффициенты потерь удельного импульса на
трение 0.0198067
рассеяние 0.0082720
Таблица 1
Координаты точек сопряжения контура сужающейся части сопла
-----------------------------
Точка¦ X [мм] ¦ Y [мм] ¦
----+------------+------------+
A ¦ 232.178 ¦ 127.369 ¦
B ¦ 299.122 ¦ 102.293 ¦
C ¦ 333.271 ¦ 72.533 ¦
D ¦ 385.479 ¦ 52.977 ¦
Таблица 2
Координаты контура расширяющейся части сопла
-------------------------------------------+
NN ¦ X [мм] ¦ Y [мм] ¦ Бета [рад] ¦
----+------------+------------+------------¦
1 ¦ 385.479 ¦ 52.977 ¦ 0.000000 ¦
2 ¦ 400.803 ¦ 57.860 ¦ 0.616910 ¦
3 ¦ 450.446 ¦ 90.763 ¦ 0.555199 ¦
4 ¦ 500.089 ¦ 119.762 ¦ 0.503345 ¦
5 ¦ 549.731 ¦ 145.652 ¦ 0.459031 ¦
6 ¦ 599.374 ¦ 168.990 ¦ 0.420636 ¦
7 ¦ 649.017 ¦ 190.183 ¦ 0.386983 ¦
8 ¦ 698.659 ¦ 209.542 ¦ 0.357195 ¦
9 ¦ 748.302 ¦ 227.308 ¦ 0.330604 ¦
10 ¦ 797.945 ¦ 243.674 ¦ 0.306690 ¦
11 ¦ 847.587 ¦ 258.797 ¦ 0.285045 ¦
12 ¦ 897.230 ¦ 272.807 ¦ 0.265340 ¦
13 ¦ 946.873 ¦ 285.811 ¦ 0.247308 ¦
14 ¦ 996.515 ¦ 297.902 ¦ 0.230731 ¦
15 ¦ 1046.158 ¦ 309.159 ¦ 0.215427 ¦
16 ¦ 1095.800 ¦ 319.649 ¦ 0.201247 ¦
17 ¦ 1145.443 ¦ 329.432 ¦ 0.188061 ¦
18 ¦ 1195.086 ¦ 338.560 ¦ 0.175761 ¦
19 ¦ 1244.728 ¦ 347.079 ¦ 0.164255 ¦
20 ¦ 1294.371 ¦ 355.030 ¦ 0.153462 ¦
21 ¦ 1344.014 ¦ 362.448 ¦ 0.143314 ¦
22 ¦ 1393.656 ¦ 369.367 ¦ 0.133749 ¦
-------------------------------------------+
-
Расчет охлаждения камеры двигателя.
Охлаждение камеры, работающего на компонентах: жидкий кислород + НДМГ выполняется согласно пособия для курсового и дипломного проектирования ЖРД [ ].
Охлаждение осуществляется проточным горючим (НДМГ) , далее охладителем. .
Диаметр минимального сечения равен 106 мм, диаметр выходного сечения сопла 697 мм. Давление заторможенного потока в КС Рос=8,8 МПа. Коэф-т избытка окислителя в пристеночном слое ядре потока
. Задаемся температурой охладителя на входе в тракт Твх.охл.=300 К.
Выбираем в качестве материала стенки сплав БрХ08 и задаемся распределением температуры стенки по длине камеры. Распределение по длине выбираем линейное. В сверхзуковом сопле распределение температуры задаем двумя линейными зависимостями. Значения Тст.г. равны: в минимальном сечении 680 К, на срезе сопла 450 К, В камере сгорания 580 К.
В ыбираем 7 расчетных сечений по тракту. Массовый расход охладителя выбираем на первом участке;
на остальных участках все горючее проходит через охлаждающий тракт.
Для удобства полученные значения занесены
в таблицу 6.1.
Выбор геометрии охлаждающего тракта.
На всем протяжении камеры проходят фрезеровки.
а = 1,33 мм., - ширина канала,
б = 0,5-2 мм., - ширина ребра,
δохл = 2-4 мм., - высота ребра,
δст =0,5-3 мм., - толщина стенки.
7. Расчет смесеобразования.
Компоненты топлива:
-
Жидкий кислород;
-
Подогретый НДМГ.
Смесеобразование в камере сгорания осуществляется двухкомпонентными форсунками и центробежными жидкостными форсунками горючего для охлаждения паяного шва и огневого днища. Применение двухкомпонентных форсунок обеспечивает смешение компонентов в одной фазе вблизи плоскости форсунок в КС, что приводит к более интенсивному протеканию процессов горения и уменьшению объема КС. Кроме того пропускная способность головки с двухкомпонентными форсунками существенно выше. Правда при интенсивном протекании процессов сгорания вблизи форсунок огневое днище головки и особенно узлы пайки форсунок в днищах будут работать при повышенных температурах, поэтому часто приходится организовывать вокруг каждой форсунки жидкостную завесу. Однако улучшения смесеобразования за счет двухкомпонентных форсунок дает более существенный выигрыш в повышение надежности работы всей КС.
Определение количества форсунок на головке камеры.
Расчеты проведены согласно указаниям источников [], [].
Расположение форсунок на головке концентрическое, шаг а между центрами для двухкомпонентных форсунок может быть в пределах а = 18…50 мм: а = 24 мм. Для нормального закрепления форсунки на днище вблизи стенки камеры необходимо, чтобы между стенкой камеры и центром корпуса форсунки было расстояние, равное 5…10 мм.
Если эффективную площадь головки, занятую форсунками, поделить на площадь, занятую одной форсункой на головке, то получим количество форсунок, уместившихся на головке:
Эффективная площадь головки Fк.эф.=πR2к.эф.
Rк.эф = Rка/2 = 127 24/2 = 115 мм,
Rк радиус камеры сгорания, а шаг между форсунками.
Для концентрического расположения форсунок найдем количество окружностей, умещающихся на поверхности головки. Примем расстояние между окружностей равным шагу между форсунками, а на окружностях форсунки расположены на расстоянии шага, измеренного по хорде окружности.
Количество окружностей
Очевидно, на первой окружности число форсунок будет
На второй окружности число форсунок
На третьей окружности
На четвертой окружности
Общее число форсунок с центральной составит
n = n1 + n2 + n3 = 1+6 + 12 + 18 +24 = 61.
Шаг между форсунками по мере удаления от центра чуть-чуть возрастает.
Создание пристеночного слоя в камере.
Для обеспечения надежного охлаждения горячих стенок камеры необходимо создать вблизи стенок слой продуктов сгорания с пониженной температурой. Это достигается постановкой дополнительный струйных форсунок горючего по периферии головки. При этом в пристеночном слое создается местное соотношение компонентов меньше, чем расчетное в ядре.
Необходимо обеспечить пристеночный слой наименьшим количеством топлива, чтобы доля удельного импульса в пристеночном слое, как неоптимального, была минимальной в общем удельном импульсе камеры.
Для более равномерного распределения компонентов в пристеночном слое необходимо ставить увеличенное число форсунок. При этом пристеночный слой получается устойчивым по длине камеры и сохраняется газовая завеса с пониженной температурой по всей длине камеры.
Однокомпонентная центробежная форсунка предназначена для охлаждения паяного шва и его расход от основного горючего составит 20%. (2,8 кг/сек) Количество форсунок - 30. Плотность НДМГ= 786 .