26193-1 (707553), страница 4
Текст из файла (страница 4)
(5.4), где
- оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.
Рассмотрим последовательно распостранение когерентной световой волны в оптической системе КОС, представленной на рис. 2.
Подставив (5.1) в (5.3), определим распределение светового поля во входной плоскости х1у1 перед транспарантом
, где
(5.5).
Выражение (5.5) получено с использованием фильтрующего свойства дельта-функции и описывает расходящуюся сферическую волну в плоскости х1у1 перед входным транспарантом в параксиальном приближении. Исполь-зование фильтрирующего свойства
-функции допустимо в силу прост-ранственной инвариантности рассматриваемой параксиальной области оптической системы. Такое допущение обычно всегда имеет место на прак-тике, поскольку для уменшения влияния аберраций оптической системы на качество фурье-образа, используют лишь ее центральную часть - парак-сиальную область.
Определив распределение поля за входным транспарантом
c ис-пользованием (5.2), поле во входной плоскости фурье-объектива, согласно принципу Гюйгенса-Френеля, можно представить как
(5.6), где
- постоянный фазовый коэфициент Френеля; S1 -область интегрирования по аппертуре входного транспаранта.
Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет
(5.7), а подставив (5.6) в (5.7) с учетом (5.3), распределение поля в плоскости х3у3 анализа можно представить в виде :
(5.7),
где
(5.8).
Поскольку переменные х1, у1 и х2, у2 интегрирования, в полученном выражении (5.7), являются величинами взаимонезависимыми, то их можно поменять местами, а (5.7) примет вид:
(5.9),
где
(5.10), а
- функция зрачка фурье-объектива, удовлетворяющая условиям (5.10) финитности в области
.
Для анализа выражения (5.9), рассмотрим отдельно внутренний интег-рал, который описывает суперпозицию светового поля по входной аперту-ре
фурье-объектива и группируя совместно одинаковые экспотенциаль-ные сомножители, упростим его. Формальное увеличение пределов интег-рирования по входной апертуре
фурье-объектива до бесконечности возможно, поскольку размеры входного транспаранта
всегда на мно-го меньше аппертуры
фурье-объектива, а также чем требуется по усло-виям параксиальности Френеля и условию (5.10) финитности функции зрачка фурье-объектива. Поэтому дифракционное изображение сигнала
в плоскости х3у3 анализа ограничено не апертурой
фурье-объек-тива, а апертурой
входного транспаранта. Это влияние уменшается, чем ближе расположен входной транспарант к фурье-объективу, т.е. чем меньше растояние
, что обычно всегда выполняется на практике. Учитывая это можно записать
в пределах области интегрирова-ния
(5.11).
Выражение (5.11) содержит два взаимонезависимых подобных интегра-ла
и
, каждый из которых может быть вычислен с использованием табличного интеграла вида :
(5.12). Применив (5.12) к (5.11), но предва-рительно обозначив через
,
и
(5.12), выражение (5.11) можно представить в виде :
(5.13).
Подставив (5.13) в (5.9) получим
(5.14).
Выражение (5.14) описывает пространственное распределение комп-лексных амплитуд светового поля в плоскости х3у3 спектрального анализа и содержит ряд взаимонезависимых квадратичных фазовых сомножителя, по-ле в плоскости х3у3 является фурье-образом поля в плоскости х1у1 за входным транспарантом
с пространственными частотами
и
, равными
, и
(5.15)
Подинтегральный квадратичный сомножитель в выражении (5.14) для распределения поля в плоскости х3у3 анализа
(5.16), при
(5.17)
Решив уравнение (5.17) относительно
определим
(5.18).
Полученное уравнение (5.18) представляет собой известное условие Гауса о фокусировке оптической системы, согласно
(5.19)
Таким образом, только при условии фокусировки оптической системы, представленной на рис.2, в ней осуществляется спектральное преобразо-вание Фурье, формируемое в плоскости х3у3, над сигналом
, поме-щенным во входной плоскости х1у1. Однако, фурье-образ сигнала содержит квадратичную модуляцию фазы волны из-за наличия фазового сомно-жителя, стоящего перед интегралом в выражении (5.14). Наличие фазовой модуляции фурье-образа приводит к тому, что при регистрации его методами голографии в результирующей интерферограмме возникают дополнительные аберрации, значительно влияющие на его качество. Эта модуляция также имеет важное значение и не может быть опущена в случае дальнейших преобразований деталями оптической системы фурье-образа
сигнала
. Однако, квадратичная модуляция фазы фурье-образа может быть устранена при соответствующем выборе геометри-ческих параметров оптической системы, т.е.
(5.20) при
(5.21).
Решив уравнение (5.21) относительно
находим
(5.22) при
=0, либо
.
Таким образом, квадратическая фазовая модуляция фурье-образа устра-нима лишь в двух случаях:
-
при размещении сигнального транспаранта в передней фокальной плоскости фурье-объектива, что полностью совпадает с полученными ранее результатами исследований, но лишь для КОС с плоской вол-ной во входной плоскости, т.е. при
. -
при
, т.е. плоскость х3у3 спектрального анализа должна совпа-дать с плоскостью х2у2 размещения фурье-объектива, что физически нереализуемо в оптической системе, согласно условию Гауса.
Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
(5.23),
откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией
пропускания полевой диафрагмы ФИС, равной:
(5.24), где
- ширина щели вдоль координаты х3,
- высота щели вдоль координаты у3.
Распределение
комплексных амплитуд световой волны в плос-
кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала
т.е.
.
Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр
входного сигнала
пропорционален распределению освещенности
в плоскости спектрального анализа КОС, т.е.
(5.26), где
,
- взаимосвязь между пространственными х(у) и пространственно-частотными
координатами в плоскости спектрального анализа КОС;
комплексная постоянная, определяемая (5.8).
Тогда согласно [11, 12] выходной сигнал ФИС с безинерционным фотоприемником, воспринимающим весь световой поток, прошедший через полевую диафрагму, можно определить как
(5.27), где
- интегральная чувствитель-ность фотоприемника;
- положение центра полевой диафрагмы в фиксированный момент времени при измерении сечения спектра
вдоль координаты
.
Так как в общем виде интеграл свертки (5.27) вычисляется аналитически лишь для простых элементарных функций, то при вычислении свертки сложных монотонно-гладких функций, значительно отличающихся по шири-не, допускают аппроксимацию результата более широкой функцией, что обеспечивает погрешность не более 6-10% в пределах более широкой функции [10, 17, 18].
Поэтому для повышения точности измерения спектра и упрощения вычисления интеграла (5.27), ширина полевой диафрагмы
выбрана равной 20 мкм, что в десятки раз меньше ширины максиумов функции
.
Применительно к рассматриваемому случаю выражение (5.27) с учетом (2.16) и (5.24) может быть представлено в виде
(5.28).
Полученное выражение (5.28) описывает форму электрического сигнала на выходе ФИС при сканировании энергетического спектра пространствен-ной структуры ЛЗ узкой щелевой диафрагмой. Из (5.28) видно, что форма выходного сигнала ФИС повторяет форму спектра с точностью до коэфи-циента пропорциональности, зависящего от размеров полевой диафрагмы ФИС и коэфициента
- масштаба КОС. Поэтому, измеряя амплитудно-временные параметры выходного электрического сигнала ФИС соответст-вующей аппаратурой, можно реализовать амплитудный метод контроля величины среднего квадратического отклонения ширины щелей в прост-ранственной структурк ЛЗ.
При амплитудном методе контроля с помощью КОС величины среднего квадратического отклонения
ширины щелей в пространственной струк-туре ЛЗ необходимо на выходе ФИС измерять величину амплитуд отдельных максимумов ее энергетического спектра на частотых
. Тогда, подставив
в (5.28) с учетом, что
и выполнив ряд алгеб-раических преобразований можно показать, что амплитула
-го максимума спектра, измеряемого на выходе ФИС, будет равна
(5.29), а использовав тож-дество (653.4) из [20], амплитуду
-го максимума спектра представим в виде
(5.30).
, т.е. плоскость х3у3 спектрального анализа должна совпа-дать с плоскостью х2у2 размещения фурье-объектива, что физически нереализуемо в оптической системе, согласно условию Гауса.














