26193-1 (707553), страница 2

Файл №707553 26193-1 (Лазерная система для измерения статистических характеристик пространственных квазипериодических структур) 2 страница26193-1 (707553) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Г.Харисон [27] в 1949 году предложил способ контроля дифракционных решеток с помощью интерферометра Майкельсона и положил, таким образом, начало разработке схемы интерферометра с дифракционной решеткой для контроля качества самих решеток.

Дифракционные методы контроля качества изготовления периодических структур являются наиболее переспективными. Они положены в основу многочисленных лазерных дифракционных измерителей линейных размеров малых объектов.

Для контроля диаметра тонких отверстий в [28] предложено освещать контролируемые отверстия монохроматической световой волной и измерять амплитуду четных и нечетных максимумов дифракционной картины отверс-тия. Для расширения диапазона диаметра измеряемых отверстий, необхо-димо изменять длину волны излучения до тех пор, пока амплитуда интерференционного сигнала нечетных гармоник достигнет удвоенного значения амплитуды световой волны в свободном пространстве. Диаметр измеряемого отверстия определяют по формуле : , где - растояние между измеряемым отверстием и точкой измерения светового поля в дифракционной картине. Недостатком метода является необхо-димость применения лазера с перестраиваемой длиной волны генерации.

Известны также устройства [29, 30] для допускового контроля геометрических размеров изделий путем соответствующей обработки их дифракционного изображения сложной фотоэлектрической измерительной системой, либо оптической системой пространственной фильтрации. Однако эти устройства являются узко специализированными и требуют предварительного синтеза сложных голографических пространственных фильтров, что позволяет их использовать лишь для качественного допус-кового контроля изделий.

Таким образом лазерные дифрактометры являются наиболее переспек-тивным научным направлением развития автоматизированного метро-логического оборудования. Оно может быть также успешно использовано и для разработки средств автоматизации контроля статистических характе-ристик квазипериодической структуры ЛЗ. Это, в свою очередь, может быть выполнено лишь с созданием специализированных оптических систем обработки изображений (ОСОИ) на базе когерентных оптических спектро-анализаторов (КОС) пространственных сигналов, положенных в основу практически всех известных лазерных дифрактометров.

2. Обзор схем построения лазерных

дифрактометров

Интенсивное развитие этих систем началось в начале 80-х годов. Построение голографических и дифракционных оптических систем для метрологии основано на получении изображений Френеля, либо Фурье исследуемого объекта с последующим анализом их параметров фото-электической измерительной системой.

Основным преимуществом таких метрологических систем, перед ви-зуальными оптическими измерительными приборами, является высокая производительность, что позволяет автоматизировать ряд метрологических процессов в промышленности. Где требуется интегральная комплексная оценка качества изделия.

Для формирования изображений Фурье или Френеля исследуемого объекта используют когерентный оптический спектроанализатор прост-ранственных сигналов, схему построения и геометрические параметры которого выбирают в зависимости от характера решаемой задачи.

В настоящее время уже стала классической схема когерентного оптического спектроанализатора (КОС), приведенная на рис.1.

Рис.1. Принципиальная схема когерентного оптического спектро-

анализатора:

  1. Лазер;

  2. Телескопическая схема Кеплера;

  3. Входной транспарант;

  4. Фурье-объектив;

  5. Дифракционное изображение.

КОС состоит из расположенных последовательно на одной оптической оси источника когерентного излучения - лазера 1 и телескопической систе-мы 2 Кеплера, формирующей плоскую когерентную световую волну. Эта волна падает на входной транспарант 3 с фотографической записью исследуемого сигнала. Входной транспарант 3 расположен в передней фокальной плоскости фурье-объектива 4 (объектива свободного от аберра-ции дисторсии и поперечной сферической ) с фокусным растоянием . На входном транспаранте 3 световая волна дифрагирует, и фурье-объективом 4 в задней плоскости 5 формируется дифракционное изображение исследуемого сигнала, которое является его фурье-образом и описывается выражением

, где А0 -амплитуда плос-кой монохроматической световой волны в плоскости ; - длина волны; - пространственные частоты, равные и , где х2, у2 - пространственные координаты в плоскости 5.

Таким образом, распределение комплексных амплитуд световых полей в задней и передней плоскостях фурье-объектива 4 оптической системы связаны между собой парой преобразований Фурье. Поле в задней фокальной плоскости является пространственным амплитудно-фазовым спектром сигнала, помещенного в его передней фокальной плоскости.

Описанная выше оптическая система выполняет спектральное разложе-ние пространственного сигнала и является когерентным оптическим спектроанализатором. Он позволяет анализировать одновременно ампли-тудный и фазовый спектры как одномерных, так и двумерных пространст-венных сигналов.

Существует две основные разновидности схем построения лазерных дифрактометров. Эти схемы представлены на рис .2 и рис. 3.

При условии фокусировки оптической системы, представленной на рис.2, в ней осуществляется спектральное преобразование Фурье, форми-руемое в плоскости х3у3, над сигналом помещенным во входной плоскости х1у1. Однако, фурье-образ сигнала в такой системе содержит квадратичную модуляцию фазы волны из-за наличия фазового сомножителя, стоящего перед интегралом в выражении :

(2.1).

Это выражение описывает пространственное распределение комплекс-ных амплитуд светового поля в плоскости х3у3 спектрального анализа и со-держит ряд взаимонезависимых квадратичных фазовых сомножителей.

Наличие фазовой модуляции фурье-образа приводит к тому, что при ре-гистрации его методами голографии в результирующей интерферограмме возникают дополнительные аберрации, значительно влияющие на его ка-чество. Эта фазовая модуляция также имеет важное значение и не может быть опущена в случае дальнейших преобразований деталями оптической системы фурье-образа сигнала. Но эта модуляция может быть устранена при соответствующем выборе геометрических параметров оптической системы, т.е.

, при . (2.2).

Таким образом, квадратическая фазовая модуляция фурье-образа устра-нима лишь в двух случаях:

  • при размещении сигнального транспаранта в передней фокальной плоскости фурье-объектива, что полностью совпадает с полученными ранее результатами исследований, но лишь для КОС с плоской вол-ной во входной плоскости, т.е. при .

  • при , т.е. плоскость х3у3 спектрального анализа должна совпа-дать с плоскостью х2у2 размещения фурье-объектива, что физически нереализуемо в оптической системе, согласно условию Гауса.

Учитывая выражения и (2.2) можем преобразовать (2.1) к виду:

(2.3),

откуда видно, что квадратичные фазовые искажения фурье-образа сигнала устранимы не только при освещении входного транспаранта плоской, но и сферической волной.

При условии фокусировки оптической системы, показанной на рис.3, в ней осуществляется спектральное преобразование Фурье, формируемое в плоскости х3у3, над пространственным сигналом, помещенном в плоскости х2у2. Однако, фурье-образ сигнала в такой системе содержит квадра-тическую модуляцию фазы волны из-за наличия фазового сомножителя. Наличие фазовой модуляции фурье-образа сигнала приводит к допол-нительным аберрациям интерферограммы при регистрации методами голографии. Эта модуляция имеет также важное значение и не может быть опущена. Модуляция может быть устранена на оптической оси системы и при , т.е. при фокусировке оптической системы на бесконечность. Но в этом случае оптическая система не будет осуществлять спектральное преобразование Фурье.

Для оптической системы КОС, представленной на рис.3, квадратичные фазовые искажения, приводящие к аберрационным искажениям фурье-об-раза сигнала, не могут быть устранены лишь путем соответствующего выбора геометрических парметров оптической системы. Для устранения этих искажений необходимо оптическую систему дополнить корректирую-щим фильтром с фазовой характеристикой, сопряженной к квадратичным фазовым искажениям фурье-образа сигнала.

Итак можно сделать выводы:

  • Квадратичные фазовые искажения фурье-образа сигнала устранимы путем соответствующего выбора геометрических размеров оптичес-кой системы, но лишь для КОС, выполненного по схеме “входной транспарант - перед фурье-объективом”.

  • При расположении ЛЗ в передней фокальной плоскости фурье-объектива масштаб ее дифракционного изображения не зависит от радиуса освещающей волны, а определяется величиной фокусного растояния и длиной волны излучения лазера. Это позволяет рас-ширить дифракционную полосу анализа путем увеличения радиуса освещающей волны, не изменяя, при этом масштаб дифракционного изображения.

  • При освещении ЛЗ, расположенной в передней фокальной плоскости фурье-объектива, плоской световой волной, погрешность прост-ранственной частоты зависит лишь от длины волны излучения лазера и фокусного растояния фурье-объектива, что позволяет обеспечить ее уменшение путем увеличения и .

Рис.2. Схема КОС со входным транспарантом перед фурье-объективом

Рис.3. Схема КОС со входным транспарантом за фурье-объективом

3.Математическая модель квазипериодической

структуры СВЧ линий замедления

При статистических исследованиях геометрических размеров элементов пространственной структуры ЛЗ установлено, что из-за различных техноло-гических погрешностей, эти размеры являются величинами случайными с нормальным законом распределения. Таким образом, пространственная структура ЛЗ не является строго переодической, а поэтому ее энер-гетический спектр будет отличаться от энергетического спектра периоди-ческих структур.

Из скалярной теории [7, 8] известно, что оптической системой КОС в плоскости спектрального анализа формируется дифракционное изображе-ние пространственного объекта, помещенного во входной плоскости. Математические зависимости, описывающие форму дифракционного изоб-ражения, могут быть определены лишь путем решения задачи о дифракции когерентной световой волны на пространственной структуре объекта. Одна-ко для пространственной структуры ЛЗ с флуктуациями периодичности, решение такой задачи чисто оптическими методами не может быть полу-чено из-за значительной математической сложности ее. Кроме, того эти методы применимы лишь для решения дифракционных задач на регу-лярных детерминированных пространственных структурах и неприменимы для случайных пространственных сигналов.

Поэтому в настоящее время такие задачи для случайных оптических сигналов решают в оптике с применением методов статистической радио-физики в силу единства физических процессов и математических методов анализа прохождения электрических сигналов в электрических цепях и распостранения пространственных сигналов в оптических системах. Это позволяет определить распределение освещенности в дифракционном изображении квазипериодической пространственной структуры ЛЗ (т.е. ее энергетический спектр) путем вычисления усредненного квадрата преобра-зования Фурье над ее амплитудным коэфициентом пропускания.

Пространственная штриховая структура ЛЗ является квазипериодичес-ким сигналом, в технике ОСОИ, и состоит из взаимонезависимых прозрач-ных щелей и непрозрачных стенок. К тому же период пространственной структуры ЛЗ также является случайной величиной, так как он равен сумме двух взаимонезависимых величин. Таким образом, пространственная струк-тура ЛЗ относится к классу случайных квазипериодических сигналов.

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее