125971 (690806)
Текст из файла
Содержание
Задание 2
Содержание 3
Введение 4
1 Феросплавные печи 5
1.1 Конструкция феросплавных печей 5
2 Машины и механизмы феросплавных печей 9
2.1 Механизмы перемещения и перепуска электрода 9
2.2 Механизм вращения копуса печи 12
3 Расчет. Рудовосстановительная печь 13
3.1 Oпределение мощности трансформатора электрических параметров печи 16
3.2 Определение диаметра электрода геометрических размеров ванны печи……………………………………………………………………………… 20
Заключение 27
Список использованных источников 28
Введение
Ферросплавные печи по назначению могут быть восстановительными или рафинировочными, а по конструкции — Открытыми, полузакрытыми и герметизированными, которые часто объединяют общим названием — закрытые печи С дожиганием газа под сводом как со стационарными, так и с вращающимися ваннами. В зависимости от формы ванны печи бывают круглыми, прямоугольными, треугольными и овальными. По способу выдачи из печи сплава и шлака печи подразделяются на неподвижные и наклоняющиеся. Имеются также печи с выкатными ваннами.
Печи для рафинировочных процессов, предназначенные для выплавки рудоизвесткового расплава, рафинированных феррохрома и ферромарганца, ферровольфрама и др., по конструкции близки к электросталеплавильным дуговым печам, поэтому рассмотрим устройство рудовосстановительных печей для производства ферросплавов.
1 ФЕРРОСПЛАВНЫЕ ПЕЧИ
1.1 КОНСТРУКЦИИ ФЕРРОСПЛАВНЫХ ПЕЧЕЙ
В промышленности используются ферросплавные печи однофазные и трехфазные; ведутся работы по использованию печей, работающих на токе пониженной частоты и на постоянном. Однофазные печи в настоящее время имеют ограниченное применение. Трехфазные печи строят или с расположением электродов в одну линию (прямоугольные печи) или в большинстве случаев с расположением электродов по вершинам треугольника (круглые или треугольные печи).
Печи большой мощности изготавливают и с шестью электродами.
Наиболее широко распространены в ферросплавной промышленности круглые трехфазные печи. В круглой печи, электроды которой расположены по треугольнику, тепло концентрируется достаточно хорошо для того, чтобы образующиеся под каждым электродом плавильные тигли соединялись между собой. Такие печи имеют минимальную теплоотдающую поверхность и обеспечивают лучшее использование тепла. При хорошей конструкции короткой сети и наличии установок искусственной компенсации реактивной мощности такие печи могут иметь высокий коэффициент мощности, превышающий 0,95, даже для печей мощностью 40—100МВ-А.
Прямоугольные трехэлектродные печи имеют сравнительно низкий
печной установки, для них характерно появление «дикой» и «мертвой» фаз, поэтому в настоящее время такие печи для производства ферросплавов не строят. Прямоугольные шестиэлектродные печи с тремя одно фазными трансформаторами (рис. 1), представляющие собой По-существу три однофазных печи с общей ванной, и значительной степени свободны от этих недостатков и имеют ряд достоинств, в частности при их использовании облегчается загрузка шихты, легче регулируется расстояние между электродами в зависимости от электрического сопротивления применяемой шихты. Такие печи отечественной конструкции мощностью 63 MB-А успешно эксплуатируются при производстве сплавов марганца.
Шихтовые материалы, особенно при производстве кремнистых сплавов, попадая в зону высоких температур, начинают оплавляться и спекаться, что резко ухудшает газопроницаемость шихты. Для восстановления нормального положения приходится прокалывать шихту жердями, металлическими прутьями и т. п. Для устранения этих явлений были предложены печи с вращающейся ванной, имеющие следующие достоинства:
Рисунок 1. Прямоугольная закрытая шестиэлектродная печь:
1 — механизм перепуска электродов; 2 — механизм перемещения электродов; 3 — короткая сеть; 4 — кольцо зажима электродов; 5 — электрод; 6 — загрузочная воронка; 7 — свод; 8 — футеровка ванны печи 9 — кожух печи; 10 — фундамент печи
-
Улучшение хода восстановительного процесса, так как обеспечиваются хорошая газопроницаемость шихты, разрушение настылей на колошнике и перегородок в подсводовом пространстве.
-
Удлинение срока службы футеровки печи.
-
Облегчение разрушения карборунда и шлакового «козла» по всей площади ванны, что обеспечивает удлинение кампании печи, особенно при производстве кристаллического кремния и углетермического силикокальция.
В рафинировочных печах вращение ванны в ряде случаев также целесообразно: например, обеспечивается равномерное вычерпывание сплава при производстве ферровольфрама, а при производстве рафинированного феррохрома и силикотермического силикокальция повышается стойкость футеровки и равномерно распределяется шихта по колошнику печи. Отечественный опыт показывает, что вращение ванны печи позволяет повысить ее производительность на 3—6 % и снизить удельный расход электроэнергии на 4—5 % при одновременной значительной экономии сырых материалов.
Рисунок 2. Схема закрытой печи мощностью 33 МВД:
1— короткая сеть; 2 — система водоохлаждения; 3 — футеровка ванн; 4 — кожух; 5 — плита механизма вращения; 6 —механизм вращения ванны; 7 — механизм перепуска электродов; S — система гидропривода; 9 — гидроподъемник; 10 — контактные щеки; 11 — свод
Для улучшения показателей процесса, защиты воздушного бассейна, утилизации газов, имеющих теплоту сгорания — 10,9 МДж/м3, и улучшения условий труда и службы оборудования в производстве ферросплавов широко применяют закрытые печи. Эти печи (рис.2) в основных деталях аналогичны открытым печам, но дополнительно имеется свод. В таких печах ~15 % газа из подсводового пространства проходит через шихту, находящуюся в загрузочных воронках, и сгорает над ней. Загрузка шихты осуществляется при помощи загрузочных труб и воронок в кольцевые отверстия между электродами и загрузочными воронками. Для сокращения длины электрода и, полной герметизации подсводового пространства печи все шире используют герметизированные электропечи, у которых электрододержатель помещен в подсводовое пространство, имеется уплотнение вокруг электродов и загрузочных труботечек, которые подают шихту под свод печи. В последнее время начата эксплуатация рудовосстановительных электропечей с парогенераторами и дожиганием газа под сводом печи, который в этом случае выполняет роль пароперегревателя (рис.3). Газ очищают в рукавных фильтрах, степень очистки составляет 98%.
Рисунок 3. Схема парогенератора печи мощностью 75 МВА для выплавки 75%-ного ферросилиция:
1— свод (пароперегреватель); 2 — горизонтальный и вертикальный газоотводы; 3 — аварийная труба; 4 — вертикальный котел; 5 — вентиляторы; 6—ванна
Рис. 94. Схема парогенератора печи мощностью 75 МВА для выплавки 75%-ного ферросилиция:
/ — свод (пароперегреватель); 2 — горизонтальный и вертикальный газоотводы; 3 — аварийная труба; 4 — вертикальный котел; 5 — вентиляторы; 6 •— ванна
2. МАШИНЫ И МЕХАНИЗМЫ ФЕРРОСПЛАВНЫХ ПЕЧЕй
2.1 Механизмы перемещения и перепуска электродов
На ферросплавных печах применяют набивные самоспекающиеся электроды, представляющие собой цилиндрический кожух из листовой стали, набиваемый электродной массой. Массу приготовляют из смеси антрацита (или термоантрацита), кокса, каменноугольного пека или смолы. По мере расхода электрода металлический кожух наращивают путем приварки новых секций. Электроды набивают в среднем один раз в сутки.
Для перемещения электродов применяют механизмы канатного, винтового и гидравлического типов. Недостатками канатных механизмов являются быстрый износ проволочных канатов, работающих в абразивной атмосфере, значительные габариты лебедок, необходимость снабжать механизм специальным постоянно действующим тормозным устройством, ограничивающим скорость опускания электрода при использовании электроприводов переменного тока. Винтовые механизмы имеют низкий к. п. д. и малую стойкость червячных редукторов и винтовых пар. Гидравлические механизмы широко применяют на мощных рудотермических печах вследствие их компактности при большой массе электродов, надежности и ремонтопригодности. Этому способствует также удобство их компоновки с пружинно-гидравлическими механизмами перепуска электродов.
На каждом электроде установлено отдельное гидравлическое подъемно-перепускное устройство, состоящее из двух механизмов перемещения и перепуска электрода. Механизм перемещения электрода обеспечивает его большой ход и требуемое положение в ванне печи, а механизм перепуска — опускание электрода под действием собственного веса на ограниченную величину по мере сгорания.
Общая компоновка узла механизмов перемещения и перепуска электродов рудотермической печи мощностью 16 500 кВА приведена на рис. VIII.2. Электрод вводят в несущий цилиндр 8 и удерживают пружинно-гидравлическим механизмом перепуска электрода, расположенным на несущей траверсе 5 и состоящим из колец / и 3 с зажимами и гидроцилиндров 2. Передвижение траверсы, а вместе с ней несущего цилиндра и электрода осуществляют тремя плунжерными гидроцилиндрами 4 с подвижными корпусами, связанными с траверсой и расположенными под углом 120°. Масло подводят через пустотелые плунжеры. Сферические головки плунжера входят в опорные стаканы 9 и обеспечивают самоустанавливание устройства. Во избежание прохода газов и пыли между несущим цилиндром и рамой устройства 10 применено кольцевое уплотнение 6 из резиновой ленты с огнеупорными вставками и нажимными пружинами. Для предупреждения возможного перекоса несущего цилиндра на двух горизонтах установлены упорные ролики 7, по шесть роликов в каждом ряду.
Механизм перепуска электрода (рис.4) состоит из двух колец 1 и 4, снабженных шестью пружинно-гидравлическими зажимами (буксами) 3 каждое, и подъемных гидроцилиндров 2.
Н
ижнее кольцо / закреплено на несущей траверсе, верхнее перемещается тремя плунжерными гидроцилиндрами, закрепленными на нижнем кольце. Электроды зажимаются шестью щеками 5, покрытыми слоем 7 маслостойкой резины и связанными между собой планками 6. Радиальное прижатие щек выполняют рабочие пружины 10, воздействующие на бугели 9. Освобождение электрода производят гидроцилиндрами 11, которые при этом сжимают пружины и отводят бугели. Гидроцилиндры соединены кольцевыми маслопроводами 8 с напорной станцией и панелью управления.
Рисунок 4 Механизм перепуска электрода.
Последовательность операций при перепуске электрода следующая. Перед началом работы механизма верхнее кольцо опущено и на электрод наложены зажимы обоих колец. Освобождают зажимы верхнего кольца и поднимают его гидроцилиндрами в крайнее верхнее положение. Далее последовательно накладывают на электрод зажимы верхнего кольца и освобождают зажимы нижнего кольца. При сбросе масла из подъемных гидроцилиндров электрод получает перепуск, равный их ходу. На опущенный электрод накладывают зажимы нижнего кольца.
Электрододержатель (рис. VIII.4) должен обеспечить удержание электрода и надежный подвод тока к нему. В кольце электрододержателя 1 закреплены по окружности шесть гидроцилиндров 7, обеспечивающих прижатие токоподводящих бронзовых башмаков к электроду. Кольцо с несущим цилиндром 3 механизма перемещения электрода соединено трубчатыми водоохлаждаемыми подвесками 2. Нижний пояс несущего цилиндра снаружи защищен водоохлаждаемыми коробками 4. Водоохлаждаемые элементы 5 электрододержателя соединены медной трубопроводной арматурой 6.
Рисунок 3-Механизм перепуска электрода.
Рисунок 4-Механизм зажима электрода.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















