125971 (690806), страница 2
Текст из файла (страница 2)
2.2 Механизм вращения корпуса печи
В конструкциях опорно-поворотной части и механизма вращения, мощных рудотермических печей учитывают два основных фактора — большую массу печи (800 т и более) и малую скорость ее вращения (1 оборот за 30—200 ч). Опорно-поворотную часть выполняют трех основных типов:
Рисунок 5. Механизм поворота ферросплавной печи
-
с платформой, опирающейся круговым рельсом на тумбы
с опорными и упорными роликами (по типу дуговых электропечей); -
с платформой, поворачиваемой на катках в кольцевой
обойме; -
с платформой, перемещающейся на ходовых роликах по
стационарному круговому рельсу.
Последний тип наиболее часто применяют в конструкциях мощных отечественных ферросплавных электропечей.
На рис.5 показан механизм поворота корпуса ферросплавной печи с цилиндрическими редукторами и открытой конической передачей.
Поворотную платформу 1 (поддон) выполняют сварной конструкции, реже железобетонной. Корпус печи устанавливают на систему мощных двутавровых балок 2, образующих каналы для воздушного охлаждения днища печи. Платформа защищена от теплового воздействия слоем огнеупорного кирпича 14. Ее поворот происходит по круговому рельсу 3 на двадцати безребордных ходовых роликах 7 со сферическими поверхностями катания, заключенных в обоймы 6. От горизонтальных смещений платформы предусмотрена центральная опора 4 со сферическим роликоподшипником 5. Привод состоит из электродвигателя постоянного тока 12 с регулируемой частотой вращения, трех двухступенчатых цилиндрических редукторов 9—11 и открытой конической передачи 8, зубчатый венец 13 которой прикреплен болтами к платформе. Приводы с червячными редукторами применяют значительно реже из-за более низкого к. п. д., повышенного износа и меньшей надежности.
Техническая характеристика механизма вращения корпуса ферросплавной электропечи мощностью 16,5 MB-А
Время одного оборота корпуса, ч 33—132
Передаточное число зубчатых передач привода 1 975 000
Момент сопротивления вращению корпуса, кН-м 332
\ К. п. д. привода 0,1
Мощность электродвигателя, кВт 1,6
3.РУДОВОССТАНОВИТЕЛЬНАЯ ПЕЧЬ
Рудовосстановительные печи (ферросплавные печи) являются наиболее широким и сложным классом дуговых печей сопротивления, различающихся по назначению, особенностям технологического процесса и конструкциям.
Все рудовосстановительные печи относятся к печам смешанного нагрева. Тепловая энергия выделяется непосредственно в ванне печи за счет горения закрытой дуги и активного сопротивления электрическому току.
Ванна печи сложная по своему устройству. Она содержит шихту, находящуюся в различном физико-химической состоянии (от твердых кусков до тестообразной магмы), шлак и металл. Технологические процессы, протекающие в ванне, очень разнообразны. В свою очередь, электрические и геометрические параметры печей зависят от протекающих в них процессов. В печах небольшой мощности эта зависимость мало заметна, т.е. сходство электрических режимов позволяет использовать такую ванну для различных процессов. С ростом мощности печей и усложнением их конструкции, а также повышением требований к качеству продукта стало очевидной необходимость дифференцированного подхода к выбору. конструкции ванны и ее параметров, с учетом особенностей технологического процесса. В настоящее время рудовосстановительные печи делятся по конструктивному исполнению на открытые, закрытые и герметичные с вращающейся или неподвижной ванной. Ванна печи может быть круглой, прямоугольной треугольной, овальной.
.Наибольшее распространение получили печи с круглой вращающейся ванной с тремя электродами, расположенными по вершинам рам постороннего треугольника. Таких печей для производства ферросплавов у нас в стране и за рубежом подавляющее большинство (свыше 95 %).
В рудовосстановительных печах преимущественно используют самоспекающиеся электроды системы Седерберга, позволяющая создать непрерывно наращиваемые электроды любых размеров и небольшой массы. Они бывают кок круглого, так и прямоугольного сечения.
Большим достижением в развитии рудотермических печей явилось применение закрытого колошника, что позволило улучшить условия труда, а также утилизировать потенциальную энергию печных газов. Одновременно усовершенствовали конструкцию верхнего строение печей. Использование электродов больших размеров, герметичных сводов а также требования дистанционного управления и автоматизации управления печью привели к широкому распространению гидравлических устройств для перепуска и передвижения электродов и т.д. Тенденция дальнейшего увеличения производства ферросплавов И других продуктов рудовосстановительных печей неизбежно приведет, как и в прошлом, к росту единичных мощностей вечных установок. Единичная мощность рудовосстановительных электропечей в настоящее время для феррохрома и ферросилиция составляет 105 MB.А(65 МВт), для ферромарганца и силикомарганца - 80 MB.A (58 МВт). МОЖНО ОЖИДАТЬ появления в ближайшие годы рудовосстановительных электропечей мощностью до 200 MВ.А, если учесть, что мощность, выделяющая на электроде, достигла 35 MB.A (23 МDт),то 6-тиэл.печь может иметь мощность 210 МВ.А.
Тенденция увеличения числа электродов рудовосстановительных ПЕЧЕЙ оправдана с электротехнической точки зрения, нескольку напряжение между электродами и подиной и шестиэлектродной печи составляет половину линейного, a в трехэлектродной печь меньше 15 %,что позволяет иметь лучшие показатели для шестиэлектродной печи. Двенадцатиэлектродная печь с кольцевой ванной позволяет совместить все конструктивные преимущества круглы и при угольных печей и значительно повысить пределы единичных мощностей электропечей. При этом не предполагается значительно увеличивать достигнутый уровень освоения диаметров самоспекающихся электродов, составляющий до 2000 MM,поскольку при дальнейшем увеличении диаметра все больше снижается активное сопротивление ванны и рабочее напряжение, что в коночном счете резко снижает, ожидаемы прирост производительности вследствие ухудшения коэффициента мощности.
В настоящее время не представляется возможным установить предел единичной мощности многоэлектродной печи.
По мере увеличения единичной мощности электропечных агрегатов.
Все более утрачивается практическое представление об установленной мощности трансформатора. Если на малых печах установленная и используемая мощности отличаются незначительно (на 10-12%),то установленная мощность трансформаторов большее печей отличается от используемой мощности почти в 2 раза ,а их естественный коэффициент мощности отличается на 45-50 %.Причиной низкого естественного коэффициента мощности является тот факт ,что с увеличением мощности печи меняется соотношение активного и реактивного coпротивлений электрического контура»
Новые требования энергосистемы о соблюдении потребителем
обусловливает oзначение электропечных агрегатов установками компенсации реактивной. мощности (УПК) продольно-
или поперечно-емкостной.
Кардинально решить проблему повышения коэффициента мощности можно лишь за счет перевода печей на питание токами пешменной
частоты или постоянным током.
Ближайшие 15-20 лет предполагается дальнейшее укрупнению
электропечных агрегатов до мощности 100-160 MB.A совершенствование конструкций закрытых печей их герметизация о применением различных методов интенсификации плавки (сдувание газа и пыли, загрузка мелочи через полые электроды, сжигание газа под оводом |применение выпрямленного тока плазменного нагрева и т.д.).
3.1 Определение мощности трансформатора и электрических параметров печи
Расчет рудовосстановительных печей ведут обычно по заданной мощности, но иногда ее надо определить. Исходными данными для этого служат требуемая производительность и удельный расход электрической анергии на I т продукта. Последний не является величиной строго постоянной и колеблется в зависимости от качества шихтовых материалов и размеров печи. Для расчета принимающий, высший удельный расход энергии, что позволяет иметь запас для увеличения производительности.
Эти исходные данные необходимы для определения годового потребления активной электроэнергии ( W ,квт.ч) на одной РВН
(2.1)
где WyдG - удельный расход электроэнергии, квт.ч/т;
G- - годовая производительность печи, т Активная мощность (Ра, кВт) проектируемой печи
(2.2)
где
- коэффициент, учитывающий время на планово-предупредительные работы ~0,985;
- то же, на средний ремонт, ~ 0,98;
- то же, на капитальный ремонт, ~ 0,96;
- коэффициент использования установленной мощности~0,95; 365x24 - число календарных часов в году.
Полезная мощность (Рпод., кВт), выделяемая электрическим током в сопротивлении ванны
(2.3)
Анализ баланса мощности действующих ферросплавных печей непрерывного действия дает следующие значения электрического к.п.д»
(
)
а) бесшлаковые процессы
0,83-0,86 - для печи с открытой ванной,
0,87~0,90 - для печи с закрытой ванной при мощности10-30 МВА, 0,90-0,"2 - для печи с закрытой ванной при мощности 60-75 МВА; б)шлаковые процессы
0,90-0,92 - для печи с круглой ванной,
0,08 -для печи с прямоугольной ванной.
Электрический к.п.д. ферросплавных печей периодического действия составляет 0,87-0,95.
Полезная мощность на один электрод (Рпол.фкВт)
(2.4) где n - число электродов, выбираемых по минимальным затратам.
Тенденция дальнейшего увеличения производства ферросплавов и других продуктов рудовосстановительных печей неизбежно приведет к росту единичных мощностей печных установок. Однако темпы этого роста и выбор типа установки для любого конкретного предприятия связаны со стремлением снизить капитальные и эксплуатационные затраты на тонну ферросплавов, обеспечить приемлемые условия труда и непрерывность работы печей и цеха. Такой выбор основывается на технико-экономической оценке показателей электропечей. Например, из установленной зависимости удельных приведенных затрат от мощности печи и количества электродов (n) следует, что:
- в диапазоне до 60-80 МВА неоспоримые преимущества имеет трехэлектродная печь (n=3) благодаря простоте конструкции и обслуживания;
- шестиэлектродная печь (n =6) может успешно применяться в диапазоне мощностей 60-100 МВА;
- при более высоких значениях мощности значительными преимуществ
вами обладает двенадцатиэлектродная кольцевая печь (n =12).
Общепринятой методики выбора электрических параметров ферро сплавной печи не разработано и их выбирают, исходя из принципа подобия параметров, характерного для хорошо работающих "образцовых" печей, некоторые эксплуатационные показатели которых приведены в таблице I.
Таблица I.
Эксплутационные показатели «образцовых» ферросплавных печей
| Сплав Ферросилиций: | | С | | |
| 45%-ный 65%-ный 75%-ный | 0,84 0,80-0,91 0,84 | 5,1-5,2 5,5 5,4 | 4,9-6 5,1-5,5 5,5-5,6 | 400 560 430 |
| Ферросиликохром Углеродистый Феррохром 0,87 7,7 6,7 350 Силикомарганец 0,80 9,6 5,5-5,6 310 Углеродистый Ферромарганец 0,78 7,8 4,7 240 Силикокальций 7,1 12 530 | ||||
Исходя из принципа сходимости с практическими данными наиболее рационален метод А.С.Микулинского, согласно которому полезное фазовое напряжение (Uпол.ф,В) равно:
где м и с - постоянные коэффициенты, характеризующие определенный тип процесса.















