125742 (690672), страница 5
Текст из файла (страница 5)
Уравнение регрессии имеет вид:
Оценки дисперсии коэффициентов регрессии определяется по формуле:
Оценка значимости коэффициентов регрессии.
Оценка значимости коэффициентов регрессии проверяется с помощью t-критерия Стьюдента. Из таблицы t-распределения по величине fy для уровня значимости q = 5 % берется табличное значение, tтабл = 2,02. Для каждого коэффициента регрессии bi вычисляется расчетное t-отношение:
где
- среднеквадратичное отклонение коэффициента
, равное корню из его дисперсии. Проверяется условие
. Коэффициенты регрессии, для которых это условие выполняется, являются незначимыми:
Уравнение регрессии имеет вид:
.
Затем вычисляем значения отклика по уравнению регрессии для каждого опыта:
Проверка адекватности математической модели
После постановки опытов, вычисления коэффициентов регрессии и проверки их значимости приступают к проверке соответствия полученной модели результатам эксперимента. Такая проверка называется проверкой адекватности полученной модели.
Вычисляем сумму квадратов, характеризующую адекватность:
,
где
- число дублированных опытов в каждой серии;
- усредненное по всем наблюдениям значение отклика в j-ом опыте;
- значение выходной величины, рассчитанное по уравнению
регрессии.
Вычислим число степеней свободы
где N – число опытов;
P – число коэффициентов регрессии проверяемой модели, полученной
после отбрасывания незначимых коэффициентов регрессии.
Вычислим дисперсию адекватности:
, ()
С помощью F-критерия Фишера проверим однородность дисперсии адекватности и дисперсии воспроизводимости:
,
Далее сравним полученное значение
с табличным значением F-критерия
, найденным при уровне значимости q = 5% для чисел степеней свободы
в числителе и
в знаменателе.
;
, а следовательно, математическую модель можно считать не адекватной.
Глава 7. Интерпретация результатов эксперимента
Основываясь на построенной модели в нормализованных обозначениях факторов, необходимо построить три семейства графиков зависимости отклика от каждого из факторов
.
Первое семейство: зависимость
от
.
















