125730 (690666)
Текст из файла
Министерство образования и науки Украины
Национальный Технический Университет
«Харьковский Политехнический Институт»
Кафедра Общей химической технологии, процессов и аппаратов
Курсовой проект
Тема проекта:
Расчет трехкорпусной выпарной установки непрерывного действия
Проектировал студент
Шорин В. В..
гр. Н-48
Руководитель проекта
Новикова Г. С.
Харьков 2010 г.
Введение
Технологическая схема выпарной установки
В химической промышленности для концентрирования растворов нелетучих и мало летучих веществ широко применяется процесс выпаривания. Наиболее целесообразно для этого использовать многокорпусные выпарные установки непрерывного действия (МВУ). МВУ состоят из нескольких корпусов, в которых вторичный пар предыдущего корпуса используется в качестве греющего пара для последующего корпуса. В этих установках первичным паром обогревается только первый корпус. В многокорпусных выпарных установках достигается значительная экономия греющего пара по сравнению с однокорпусными установками той же производительности.
Принципиальная технологическая схема трехкорпусной вакуум-выпарной установки непрерывного действия представлена на рис.1.1.
Исходный раствор подается из емкости 1 центробежным насосом 2 через теплообменник 3 в первый корпус выпарной установки 4. В теплообменнике 3 исходный раствор нагревается до температуры близкой к температуре кипения раствора в первом корпусе выпарной установки.
Первый корпус установки обогревается свежим (первичным) паром. Вторичный пар, образующийся при кипении раствора в первом корпусе, направляется в качестве греющего пара во второй корпус 5; сюда же поступает частично сконцентрированный раствор из первого корпуса. Аналогично упаренный раствор из второго корпуса подается в третий корпус 6 , обогреваемый вторичным паром второго корпуса. Упаренный до конечной концентрации в третьем корпусе готовый продукт поступает из него в емкость 10. По мере прохождения из корпуса в корпус давление и температура пара понижаются, и из последнего (третьего) корпуса пар с низким давлением отводится в барометрический конденсатор смешения 7, в котором при конденсации пара создается вакуум. Раствор и вторичный пар перемещаются из корпуса в корпус самотеком благодаря общему перепаду давления, возникающего в результате избыточного давления в первом корпусе и вакуума в последнем. Воздух и неконденсирующиеся газы, поступающие в установку с охлаждающей водой (в конденсаторе) и через не плотности трубопроводов, отсасываются через ловушку 8 вакуум-насосом.
Смесь охлаждающей воды и конденсата сливается самотеком через барометрическую трубу в бак-гидрозатвор 9.Конденсат греющих паров из выпарных аппаратов и теплообменника выводится с помощью конденсатоотводчиков.
Выбор выпарных аппаратов
Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объеме аппарата и расходе металла на его изготовление, простота устройства, надежность в эксплуатации, легкость чистки поверхности теплообмена, осмотра и ремонта.
Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами раствора.
Для выпаривания растворов небольшой вязкости (до 8 мПа∙с) без образования кристаллов, чаще всего используют выпарные аппараты с естественной циркуляцией. Высоковязкие и кристаллизующиеся растворы выпаривают в аппаратах с принудительной циркуляцией.
Растворы чувствительные к повышенным температурам рекомендуется выпаривать в роторно-пленочных выпарных аппаратах, а растворы склонные к пенообразованию – в прямоточных аппаратах с восходящей пленкой.
Типы и основные размеры выпарных аппаратов представлены в ГОСТ 11987–81, и каталогах УКРНИИХИММАШа [11,12].
Задание на расчет выпарной установки
Цель расчета выпарной установки – расчет материальных потоков, затрат тепла и энергии, размеров основного аппарата, расчет и выбор вспомогательного оборудования, входящего в технологическую схему установки.
Задание на курсовое проектирование
Рассчитать и спроектировать трехкорпусную выпарную установку непрерывного действия для концентрирования водного раствора по следующим данным:
-
Производительность установки по исходному раствору –8000 кг/ч;
-
Концентрация раствора: начальная – 5% масс.; конечная – 15 % масс.;
-
Давление греющего пара –Р=0,4 МПа;
-
Давление в барометрическом конденсаторе –,Р=0,0147 МПа;
-
Раствор подается в первый корпус подогретым до температуры кипения;
-
Схема выпаривания - прямоточная; циркуляция естественная
-
Определение поверхности теплопередачи выпарных аппаратов
Технологический расчёт выпарных аппаратов заключается в определении поверхности теплопередачи. Поверхность теплопередачи выпарного аппарата определяется по основному уравнению теплопередачи
, (1.1)
где – поверхность теплопередачи, м2;
– тепловая нагрузка, Вт;
– коэффициент теплопередачи, Вт/(м2∙К);
– полезная разность температур, К.
Для определения тепловых нагрузок, коэффициентов теплопередачи и полезных разностей температур необходимо знать распределение упариваемой воды, концентрации растворов по корпусам и их температуры кипения. Первоначально определим эти величины по материальному балансу, в дальнейшем уточним их по тепловому балансу.
1.1 Расчёт концентраций выпариваемого раствора
Производительность установки по выпариваемой воде определяем по формуле:
, (1.2)
где – производительность по выпаренной воде, кг/с;
– производительность по исходному раствору, кг/с;
– соответственно начальная и конечная концентрация раствора, масс. доли,
кг/с.
На основании практических данных принимаем, что выпариваемая вода распределяется между корпусами в соотношении
Тогда:
Проверка:
W1+W2+W3= W=0,45+0,49+0,54=1,76 кг/с.
Рассчитываем концентрации растворов в корпусах:
Концентрация раствора в третьем корпусе соответствует заданной концентрации упаренного раствора
.
1.2 Определение температур кипения раствора
Температура кипения раствора в корпусе определяется как сумма температур греющего пара последующего корпуса
и температурных потерь
, (1.3)
где – соответственно температурная, гидростатическая и гидравлическая депрессии, К.
Для определения температур греющего пара примем, что перепад давлений в установке ∆P распределяется между корпусами поровну:
, (1.4)
где PГ1 – давление греющего пара в первом корпусе, МПа;
Pбк – давление в барометрическом конденсаторе, МПа.
Тогда давление греющих паров, МПа, в корпусах составляет:
PГ1=0,4МПа
PГ2 = PГ1 – ∆P = 0,4 – 0,1284 = 0,2716 МПа
PГ3 = PГ2 – ∆P = 0,2716 – 0,1284 = 0,1432 МПа
Pбк = PГ3 – ∆P = 0,1432 – 0,1284 = 0,0148 МПа
По давлению греющего пара находим его температуру и теплоту парообразования (табл. 2.1) по корпусам.
Таблица 1.1 – Температуры и теплоты парообразования
Давление, МПа | Температура, ºС | Теплота парообразования, кДж/кг |
PГ1=0,4 | tГ1=143,6 | rГ1=2139 |
PГ2=0,2716 | tГ2=129,78 | rГ2=2180 |
PГ3=0,1432 | tГ3=110,4 | rГ3=2234 |
Pбк=0,0148 | tбк=53,71 | rбк=2372,3 |
1.2.1 Определение температурных потерь
Температурные потери в выпарном аппарате обусловлены температурной , гидростатической
и гидродинамической
депрессиями.
а) Гидродинамическая депрессия вызвана потерей давления пара на преодоление гидравлических сопротивлений трения и местных сопротивлений паропроводов при переходе из корпуса в корпус. Обычно в расчётах принимают = 1,0 – 1,5 ºС на корпус. Примем
= 1 ºС, тогда температуры вторичных паров в корпусах равны:
tвп1 = tГ2 + = 129,78+1=130,78 ºС
tвп2 = tГ3 + = 110,4+1=111,4С
tвп3 = tбк + =53,71+1=54,71 ºС
Сумма гидродинамических депрессий:
ºС
По температурам вторичных паров определим их давления и теплоты парообразования (табл. 2.2).
Таблица 1.2 – Давления и теплоты парообразования
Температура,ºС | Давление, МПа | Теплота парообразования, кДж/кг |
tвп1=130,78 | Pвп1=0,2787 | rвп1=2177 |
tвп2=111,4 | Pвп2=0,1504 | rвп2=2230 |
tвп3=54,71 | Pвп3=0,0155 | rвп3=2367 |
б) Гидростатическая депрессия обусловливается наличием гидростатического эффекта, заключающегося в том, что вследствие гидростатического давления столба жидкости в трубах выпарного аппарата температура кипения раствора по высоте труб неодинакова. Величина
не может быть точно рассчитана ввиду того, что раствор в трубах находится в движении, причем величина
зависит от интенсивности циркуляции и изменяющейся плотности парожидкостной эмульсии, заполняющей большую часть высоты кипятильных труб. Приблизительно расчет
возможен на основе определения температуры кипения в среднем поперечном сечении кипятильных труб. Величина
определяется как разность температуры кипения в среднем слое труб
и температуры вторичного пара (
):
(1.5)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.