125020 (690239), страница 4
Текст из файла (страница 4)
- температура изоляции со стороны аппарата, °С, ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции примем
;
=20°С - температура окружающего воздуха в помещении;
- коэффициент теплопроводности изоляционного материала, Вт/(м*К) [13, с.316].
Теплоизоляционный материал совелит с коэффициентом теплопроводности =0,093 Вт/(м*К) [7,с.269], [9, с.264].
Для ВА и ДУ =130°С;
(3.3.2.3)
3.4 Расчет дефлегматора сдувок
В трубках циркулирует охлаждающая техническая вода, в корпусе -парогазовая сдувка.
Парогазовая сдувка имеет следующие параметры: давление пара Рп=0,12 МПа, его температура °С, энтальпия пара hп=2683,8кДж/кг, энтальпия
конденсата hк=439,36кДж/кг [3], температура конденсата на выходе из дефлегматора tк=50°С.
Начальная и конечная температуры охлаждающей воды: °С,
°С. Средняя температура воды
°С.
Схема движения теплоносителей прямоточная.
Тепловая мощность дефлегматора определяется из уравнения теплового баланса:
[14,с.20] (3.4.1)
где WДФ - расход парогазовой сдувки, кг/с;
WДФ =0,165кг/с (согласно технологическому процессу (0,161+0,004)кг/с);
С - удельная теплоёмкость жидкого горячего теплоносителя, С=4225 Дж/(кг*К);
Gв - расход охлаждающей воды, кг/с;
Св - удельная теплоёмкость воды, Св=4174Дж/(кг*К) при tв=42,5°С;
QДФ=0,165(2683,8-439,36)103+0,165*4225(104,81-50)=408542Вт.
Расход охлаждающей воды:
(3.4.2)
Средний температурный напор:
(3.4.3)
°С
Средняя температура в корпусе
tср=tв+ =42,5+33,61 =76,11 °С.
Определим коэффициент теплопередачи графоаналитическим методом, т.к. не имеем значения температуры стенки. [6, с.35,69]
По формуле Нуссельта при °С среднее значение коэффициента теплоотдачи для пара
(3.4.4)
Поверхностная плотность теплового потока от пара к стенке, Вт/м2:
Вт/м2.
Дефлегматор выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/20мм, толщина стенки 2,5мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.
Поверхностная плотность теплового потока через стенку трубы:
(3.4.5)
Поверхностная плотность теплового потока через накипь:
Вт/м2 .
Поверхностная плотность теплового потока от стенки к воде:
Вт/м2;
для вертикальных труб =0,636Вт/(м*К);
=1,5м/с - принятая скорость в трубах;
=0,633* 10-6 м2/с - кинематическая вязкость воды при tв=42,5°С;
(3.4.6)
47393104
(3.4.7)
[6,с.36,59].
Строим график зависимости (рисунок 3.2).
При =33,61°Сq=96000Вт/м2
Коэффициент теплопередачи дефлегматора:
2856 Вт/(м2*К).
Площадь поверхности теплообмена:
4,26 м2.
Рисунок 3.2 - Построение зависимости при графоаналитическом методе расчета дефлегматора
Примем количество уходящих несконденсировавшихся газов 0,028кг/с (производственные данные), тогда в конденсатор-дегазатор возвращается конденсат в количестве 0,165-0,028=0,137кг/с.
3.5 Расчет конденсатора-дегазатора
3.5.1 Расчет конденсатора
В трубках циркулирует техническая вода, в корпусе - вторичный пар после выпарного аппарата и доупаривателя.
Вторичный пар поступает в количестве 0,9W=1,452кг/с и имеет следующие параметры: давление пара Рп=0,12 МПа, его температура t/п=104,81°С, энтальпия пара hп=2683,8кДж/кг, энтальпия конденсата hк=439,36кДж/кг, температура конденсата на выходе из конденсатора tК=50 °С.
Схема движения теплоносителей простая смешанная (один ход в межтрубном пространстве и два хода в трубном).
Начальная и конечная температуры охлаждающей воды: t/в=28°С, t//в=47°С. Средняя температура воды
tв=0,5(t/в+t//в)=0,5(28+47)=37,5°С.
Определим среднюю разность температур [4,с.170].
При противотоке 104,81-47=57,81
=50-28=22;
(3.5.1.1)
(3.5.1.2)
31,52°С
Средняя температура в корпусе tср=tв+ =37,5+31,52=69,02 °С.
Тепловая мощность горизонтального теплообменника конденсатора определяется из уравнения теплового баланса:
Qк=0,9W[(hп-hк)+C(t/п-tк)]=GвCв(t//в-t/в) [14.с.20],(3.5.1.3)
где 0,9W - расход вторичного пара в горизонтальный теплообменник конденсатора после ВА и ДУ;
С - удельная теплоёмкость жидкого горячего теплоносителя, С=4225 Дж/(кг*К);
Gв - расход охлаждающей воды, кг/с;
Cв - удельная теплоёмкость воды,
Св=4174Дж/(кг*К) при tв=37,5°С;
Qк=1,452(2683,8-439,36)103+1,452*4225(104,81-50)=3595169,79Вт.
Расход охлаждающей воды:
(3.5.1.4)
45,33 кг/с.
Определим коэффициент теплопередачи графоаналитическим методом.
По формуле Нуссельта при t/п= 104,81 °С:
(3.5.1.5)
где - поправочная функция, для водяного пара примем
=1;
- поправочный множитель, учитывающий влияние числа труб по вертикали, при n>100
=0,6 [4,с.162],[13,с.288];
Поверхностная плотность теплового потока от пара к стенке, Вт/м2:
Вт/м2.
Теплообменник выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/20мм, толщина стенки 2,5мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.
Поверхностная плотность теплового потока через стенку трубы:
.
Поверхностная плотность теплового потока через накипь:
.
Поверхностная плотность теплового потока от стенки к воде:
=0,628Вт/(м*К);
=1,5м/с - принятая скорость в трубах;
=0,717* 10-6 м2/с - кинематическая вязкость воды при tв=37,5°С;
Rе>3500;[6,с.36,59]
[4,с.155](3.5.1.6)
Строим график зависимости (рисунок 3.3).При
31,52°С q=99900 Вт/м2
Коэффициент теплопередачи конденсатора:
3169 Вт/(м2*К).
Площадь поверхности теплообмена:
35,99 м2.
3.5.2 Расчет испарителя
В корпусе кипит конденсат, в змеевике конденсируется греющий пар.Параметры греющего пара: 130°С, Рг=0,25МПа,
=2720,7кДж/кг,
hконд=535,4кДж/кг, температура конденсации греющего пара =127,43°С.
В конденсатосборник поступает конденсат в количестве Gк=1,452кг/с, его температура tК=50°С. Конденсат нагревается до tкип=104,81°С.
Уравнение теплового баланса:
Qи =GкCк(tкип-tк)+аGкr =Dи( - hконд)
, [14,с.19] (3.5.2.1)
где Dи - расход греющего пара в испаритель, кг/с;
Gк - расход холодного теплоносителя (конденсата), кг/с;
Cк - удельная теплоемкость конденсата при tк.ср;
Cк =4,2кДж/кг*К;
примем =0,97;
r - теплота парообразования теплоносителя, кДж/кг;
a - доля конденсата, испаряющегося в змеевиковом испарителе; примем a=0,1;
Qи=1,452*4200(104,81-50)+0,1*1,452*2244,4=334579Вт.
Рисунок 3.3 - Построение зависимости при графоаналитическом методе расчета конденсатора
Расход греющего пара в испаритель:
(3.5.2.2)
0,16кг/с.
Средняя разность температур:
нач=
-
=127,43-50=77,43
кон =
-
=127,43-104,81=22,62
°С
Определим коэффициент теплопередачи в змеевике [4,с.153]:
, (3.5.2.3)
где - коэффициент, учитывающий относительную кривизну змеевика;
(3.5.2.4)
где d - внутренний диаметр трубы змеевика, мм;
D - диаметр витка змеевика, мм; т.к. сборник конденсата имеет диаметр 800мм,
примем D=600мм; d=19,2мм;
1,113.
(3.5.2.5)
где А - коэффициент, объединяющий физико-химические константы воды и пара, по[4,с.164] А=7,5;
d - внутренний диаметр трубы, м;
L – длина трубы;
по [4,с.163] при =44,56°С
183,3L=183,3d=183,3*19,2=3519,36мм;
Поверхностная плотность теплового потока от пара к стенке:
Конденсатосборник выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/19,2мм, толщина стенки 2,9мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.
Поверхностная плотность теплового потока через стенку трубы:
Поверхностная плотность теплового потока через накипь:
При кипении жидкости в большом объеме коэффициент теплопередачи:
(3.5.2.6)
где С - коэффициент, зависящий от свойств жидкости и поверхности нагрева; примем для кипящего конденсата С=3;
=1 - множитель, учитывающий физические свойства жидкости; при
tк.ср= 100°С Р= 1 кг/см2;
; [15,с.44]
Графически определяем при =44,56°С q=631281 Вт/м2 .
Коэффициент теплопередачи конденсатора:
Площадь поверхности теплообмена:
3.5.3 Расчет охладителя конденсата
Из конденсатора-дегазатора выходит 1,585кг/с дистиллята, 0,25кг/с дистиллята подается в виде флегмы в выпарной аппарат. Дегазированный дистиллят поступает в корпус охладителя в количестве 1,335кг/с и имеет следующие параметры: Рд=0,12МПа t/д=104°С, температура дистиллята на выходе из охладителя t//д =50°С.
Схема движения теплоносителей прямоточная.
В трубках циркулирует охлаждающая вода: t/в=25°С, t//в=45°С. Средняя температура воды
tв.ср=0,5(t/в + t//в)=0,5(25+45)=35°С.
Средняя разность температур: при прямотоке
=104-25=79
=50-45=5;
°С
Средняя температура дистиллята в корпусе:
tд.ср=tв.ср+ tср=35+26,81=61,81°С.
Тепловой баланс охладителя конденсата [14,с.18]:
Qохл=GдCд(t/д- t//д)= GвCв(t/в- t/в),(3.5.3.1)
где Gд - расход дистиллята;
Cд - удельная теплоёмкость дистиллята, Cд =4180Дж/(кг*К);
Gв - расход охлаждающей воды;
Cв - удельная теплоёмкость воды,
Св=4174Дж/(кг*К);
Qохл=1,335 *4180(104-50)=301336 Вт.
Расход охлаждающей воды:
Определим коэффициент теплопередачи графоаналитическим методом. По формуле Нуссельта среднее значение коэффициента теплоотдачи для дистиллята: примем Н=4м;
Поверхностная плотность теплового потока от дистиллята к стенке
Вт/м2.
Охладитель выполнен из стали 12Х18Н10Т с =26,ЗВт/(м*К), dн/dвн=25/21мм, толщина стенки 2мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.
Поверхностная плотность теплового потока через стенку трубы:
Поверхностная плотность теплового потока через накипь:
Поверхностная плотность теплового потока от стенки к воде:
Вт/м2,
для вертикальных труб =0,627Вт/(м*К);
= 1,5м/с - принятая скорость в трубах;
=0,732* 10-6 м2/с - кинематическая вязкость воды при tв=35°С;
104
(3.5.3.2)
где Prв=4,87;
=1 - поправка, учитывающая отношение l/d трубки.
6590 Вт/(м2К).
Графически определяем при =26,81°С q=22306 Вт/м2.
Коэффициент теплопередачи охладителя:
Площадь поверхности теплообмена:
3.6 Анализ теплотехнических расчетов
В настоящее время для очистки трапных вод с энергоблоков 1-4 на Балаковской АЭС применяются три выпарные установки: две в работе, одна в резерве.
Фактические поверхности теплопередачи выпарного аппарата и доупаривателя составляют:
Fф.ВА= 160*3=480 м2Fф.ДУ=20*3=75 м2
Расчетные поверхности теплопередачи выпарного аппарата и доупаривателя составляют:
Fр.ВА=131,22*3=393,66 м2Fр.ДУ=13,18*3=39,54м2
Проведенные расчеты показывают, что при переработке трапных вод с шести энергоблоков АЭС запас площади поверхности теплопередачи составит:
FВА= Fф.ВА - Fр.ВА=480-393,66=86,34м2 (18%)
FДУ= Fф.ДУ - Fр.ДУ=75-39,54=35,46м2 (47,3%)
Аналогично для конденсатора-дегазатора:
Fф.К=50,3*3=150,9 м2Fр.К=35,99*3=107,97 м2
FК= Fф.К - Fр.К=150,9-107,97=42,93м2 (28,4%)
Fф.И=0,55*3=1,65 м2Fр.И=0,53*3=1,59 м2
FИ= Fф.И - Fр.И=1,65-1,59=0,06 м2 (3,64%)
Для дефлегматора сдувок:
Fф.ДФ=5*3=15 м2Fр.ДФ=4,26*3=12,78 м2
FДФ= Fф.ДФ - Fр.ДФ=15-12,78=2,22м2 (14,8%)
Для охладителя конденсата:
Fф.охл=20*3=60 м2Fр.охл=13,5*3=40,5 м2
Fохл= Fф.охл- Fр.охл=60-40,5=19,5м2 (32,5%)
Следовательно, действующая в настоящее время установка обеспечит выпаривание трапных вод с шести энергоблоков Балаковской АЭС со значительным запасом площади поверхности теплопередачи.4 КИП и автоматизация
Автоматические системы управления технологическими процессами обеспечивают оптимальные условия эксплуатации оборудования в предпусковой период, при пуске, эксплуатации и останове энергоблока, удобство обслуживания и повышают безопасность работы энергоблоков АЭС.
Требования, предъявляемые к приборам и средствам автоматизации на установке спецводоочистки трапных вод АЭС, в первую очередь определяются свойствами агрессивных сред, параметры которых измеряются. Необходимо учитывать температуру и концентрацию веществ, вызывающих коррозию, радиоактивность, влажность помещения, наличие пыли. Влияние концентрации и температуры сред учитывается при выборе соответствующих материалов для датчиков (например, чехлы термометров, диафрагмы, расходомеров, соприкасающихся со средой).
Чтобы избежать коррозии щитовых средств контроля и автоматизации, а также сохранить эксплуатационные характеристики в условиях запыленности и загрязненности атмосферы производственных помещений, необходима максимальная централизация их с очисткой и кондиционированием воздуха, подаваемого в диспетчерские пункты.
Для снижения расхода средств на автоматизацию в проекте предлагается использование приборов ГСП (Государственной системы приборов), что позволит реализовать принцип взаимозаменяемости приборов, их централизацию (меньшее количество диспетчерских пунктов). Кроме того, это повысит безопасность обслуживания оборудования.
Для удобства работы щиты приборов снабжены мнемосхемой.
На установке СВО трапных вод заложены в проекте следующие системы автоматизации и контроля:
1. Для измерения уровня вод в выпарном аппарате, доупаривателе, конденсаторе-дегазаторе применяются фотоэлектрические датчики уровнятипа СУФ-42 в комплекте с реле и сигнальным устройством, пьезометрической трубкой, манометром сильфонным с выходным сигналом 0,2-1кгс/см2.
Вторичные приборы - пневматические ПВ 10.1.Э (к датчикам с пневматическим выходом).
Регулятор пропорциональный ПР 1.5.
2.Давление в трубопроводах, аппаратах измеряется и контролируется с помощью манометров пружинных общего назначения ОБМ1-160 с диапазонами измерения 0-1кгс/см2, 0-6кгс/см2.
Вторичный прибор - потенциометр автоматический показывающий, самопишущий с изодромным регулятором типа КСП-3 с выходным сигналом 0,2-1кгс/см2.
3. В качестве датчика для измерения расхода воды используется дифманометр сильфонный показывающий, выходной сигнал 5мА, тип ДСП-786И.
Вторичные приборы типа ПВ4.2Э.
Регуляторы: ПР3.21 - приборы пневматической ветви ГСП, Б412 - блок управления аналогового регулятора.
В качестве регулирующей арматуры используются регулирующие клапаны с пневматическим исполнительным мембранным механизмом типа 25с48нж; для газов и воздуха - поворотные регулирующие заслонки типа СИУ ряда 101 с пневматическим следящим поршневым приводом ПСП-Т1.
4.Измерение температуры и регулирование подачи вод.
В выпарном аппарате и доупаривателе производится регулирование подачи трапных вод по температурной депрессии.
В качестве датчика использован термопреобразователь сопротивления медный типа ТСМ-6097, градуировка 23.
Вторичный прибор - мост автоматический показывающий, самопишущий типа КСМ-3, выходной сигнал 0,2-1кгс/см2. Регулятор пропорциональный типа ПР 1.5.
5.Измерение концентрации упаренного раствора производится плотномером жидкости типа ПЖР-5 с радиоизотопными излучателями, диапазон измерения 0,1-2г/см3. [16,17,18]
Таблица 4.1
Перечень КИП и А выпарной установки
Позиция | Наименование | Кол-во, шт. | Тип |
1-1,2-1,3-1, 4-1,5-1,7-1, 9-1 | Манометр пружинный | 14 | ОБМ1-160 |
5-2,7-2,9-2, 5-3,7-3,9-3 | Прибор вторичный - потенциометр с изодромным регулятором | 9 | КСП-3 |
11-1,13-1, 15-1,17-1 | Датчик уровня | 12 | СУФ-42 |
11-2,13-2, 15-2,17-2 | Прибор вторичный | 12 | ПВ 10.1.Э |
11-3,13-3, 15-3,17-3 | Регулятор пропорциональный | 12 | ПР1.5 |
19-1 | Дифманометр | 3 | ДСП-786И |
19-2 | Прибор вторичный пневматический | 3 | ПВ 4.2.Э |
19-3 | Прибор регулирующий | 3 | ПР3.21 |
21-1,23-1 | Термопреобразователь сопротивления | 6 | ТСМ 6097 |
21-2,23-2 | Компенсационный автоматический прибор | 6 | КСМ-3 |
21-3,23-3 | Прибор регулирующий | 6 | ПР1.5 |
25-1 | Плотномер | 3 | ПЖР-5 |
Заключение
В курсовом проекте проведены теплотехнологические расчеты выпарной установки СВО-3 для очистки радиоактивных сточных вод Балаковской АЭС, определены параметры и конструктивные характеристики оборудования установки; разработана схема автоматизации, выбраны приборы и регуляторы; определены ожидаемые технико-экономические показатели.
В результате проведенных расчетов существующей системы очистки трапных вод определена возможность её реконструкции с целью использования для переработки трапных вод с шести энергоблоков. Имеющаяся поверхность теплопередачи (FВа=393,66 м2, Рду=39,54 м2 ) обеспечит выпаривание 17,71м3 /ч сточных вод от начальной концентрации 1% до конечной - 60%.
Такое решение позволит полностью отказаться от дополнительных строительных работ и приобретения оборудования, оставив только затраты на стоимость трубопроводов, проложенных от установки до энергоблоков 5 и 6, арматуры, монтажные и наладочные работы.
Список использованных источников
-
Коростелев Д.П. Обработка радиоактивных вод и газов на АЭС. - М.: Энергоатомиздат, 1988. - 150с.
-
Основные процессы и аппараты химической технологии: Пособие по проектированию. Издание второе, переработанное и дополненное / Под ред. Ю.И. Дытнерского. - М.: Химия, 1991. - 493с.
-
Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара: Справочник. Издание второе, переработанное и дополненное. - М.: Энергоатомиздат, 1984. - 79с.
-
Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Издание десятое, переработанное и дополненное. - Л.: Химия, 1987. - 575с.
5 Перри Дж. Справочник инженера-химика. Т. 1-3. - Л.: Химия, 1969.- 639с.
-
Промышленные тепломассообменные процессы и установки / Под ред. А.М. Бакластова. - М.: Энергоатомиздат, 1986. - 323с.
-
Теплотехнический справочник / Под ред. С.Г.Герасимова. Т.1. - М, Л.: Государственное энергетическое издательство, 1957. - 728с.
-
Лащинский А.А., Толчинский А.Р. Основы конструирования и расчета химической аппаратуры: Справочник. - М, Л.: Государственное научно-техническое издательство машиностроительной литературы, 1963. - 467с.
-
Бакластов А.М., Горбенко В.А., Удыма П.Г. Проектирование, монтаж и эксплуатация тепломассообменных установок. - М.: Энергоиздат, 1981. - 335с.