124219 (689923), страница 3
Текст из файла (страница 3)
Определим полную длину трубок:
,
где м толщина трубной решетки принятая конструктивно.
м высота выступа трубок принятая конструктивно.
м.
Коэффициент трения вычисляем по формуле 6.35 [2]:
,
где
.
Определим потери давления на трение по трубному пространству:
,
где количество ходов по трубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по трубному пространству:
,
где сумма коэффициентов местных сопротивлений, где
вх – коэффициент местного сопротивления при входе потока в камеру, принимаем вх=1,5;
вых – коэффициент местного сопротивления при выходе потока из камеры, принимаем вых=1,5;
п – коэффициент местного сопротивления при повороте потока на 180, принимаем п=2,5;
вх.тр – коэффициент местного сопротивления при входе потока в трубки, принимаем вх=0,5;
вых.тр – коэффициент местного сопротивления при выходе потока из трубок, принимаем вых=1,0;
Па.
Определим потерю давления по трубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения воды по трубному пространству:
,
Вт.
При турбулентном режиме движения воды коэффициент трения по межтрубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по межтрубному пространству:
,
где количество ходов по межтрубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по межтрубному пространству:
,
где сумма коэффициентов местных сопротивлений
Па.
Определим потерю давления по межтрубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения конденсата по межтрубному пространству:
,
Вт.
Для скорости нагреваемого теплоносителя , равной 2 м/с:
Определим полную длину трубок:
,
где м толщина трубной решетки принятая конструктивно.
м высота выступа трубок принятая конструктивно.
м.
Коэффициент трения вычисляем по формуле 6.35 [2]:
,
где
Определим потери давления на трение по трубному пространству:
,
где количество ходов по трубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по трубному пространству:
,
где сумма коэффициентов местных сопротивлений, где
вх – коэффициент местного сопротивления при входе потока в камеру, принимаем вх=1,5;
вых – коэффициент местного сопротивления при выходе потока из камеры, принимаем вых=1,5;
п – коэффициент местного сопротивления при повороте потока на 180, принимаем п=2,5;
вх.тр – коэффициент местного сопротивления при входе потока в трубки, принимаем вх=0,5;
вых.тр – коэффициент местного сопротивления при выходе потока из трубок, принимаем вых=1,0;
Па.
Определим потерю давления по трубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения воды по трубному пространству:
,
Вт.
При турбулентном режиме движения воды коэффициент трения по межтрубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по межтрубному пространству:
,
где количество ходов по межтрубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по межтрубному пространству:
,
где сумма коэффициентов местных сопротивлений
Па.
Определим потерю давления по межтрубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения конденсата по межтрубному пространству:
,
Вт.
Сравнение поверхностей теплобмена по энергетической эффективности.
Для гладких труб при скорости м/с:
Определим удельные затраты мощности на прокачку:
,
где суммарная мощность на прокачку обоих теплоносителей
Вт
Вт/м2К.
Определим коэффициент энергетической эффективности:
,
Для гладких труб при скорости м/с:
Определим удельные затраты мощности на прокачку:
,
где суммарная мощность на прокачку обоих теплоносителей
Вт
Вт/м2К.
Определим коэффициент энергетической эффективности:
,
Т.к. графики строим в логарифмических координатах то:
Для труб с кольцевыми выступами при скорости м/с:
Определим удельные затраты мощности на прокачку:
,
где суммарная мощность на прокачку обоих теплоносителей
Вт
Вт/м2К.
Определим коэффициент энергетической эффективности:
,
Для труб с кольцевыми выступами при скорости м/с:
Определим удельные затраты мощности на прокачку:
,
где суммарная мощность на прокачку обоих теплоносителей
Вт
Вт/м2К.
Определим коэффициент энергетической эффективности:
,
Т.к. графики строим в логарифмических координатах то:
По результатам расчетов приведенных выше, в логарифмических координатах строим графики зависимости для гладких труб и труб с кольцевыми выступами.
Из этого графика нельзя точно судить о том, какие трубки эффективнее т.к. линии практически сливаются, поэтому проведем сравнение по другим характеристикам.
Сравнение поверхностей теплообмена по габаритной характеристике.
Для гладких труб при скорости м/с:
Определим коэффициент компактности:
,
где объем
м3.
м2/м3.
Для гладких труб при скорости м/с:
Определим коэффициент компактности:
,
где объем
м3.
м2/м3.
Для труб с кольцевыми выступами при скорости м/с:
Определим коэффициент компактности:
,
где объем
м3.
м2/м3.
Для труб с кольцевыми выступами при скорости м/с:
Определим коэффициент компактности:
,
где объем
м3.
м2/м3.
Найдем отношение для гладких трубок при скорости м/с:
;
Теперь найдем логарифм от этого соотношения:
Найдем отношение для гладких трубок при скорости м/с:
;
Теперь найдем логарифм от этого соотношения:
Найдем отношение для трубок с кольцевыми выступами при скорости м/с:
;
Теперь найдем логарифм от этого соотношения:
Найдем отношение для трубок с кольцевыми выступами при скорости м/с:
;
Теперь найдем логарифм от этого соотношения:
По результатам расчетов приведенных выше, в логарифмических координатах строим графики зависимости для гладких труб и труб с кольцевыми выступами.
Определим на сколько гладкие трубки эффективнее трубок с кольцевыми выступами:
проекция на ось абсцисс для гладких трубок.
проекция на ось абсцисс для трубок с кольцевыми выступами.
100%
100%=12,9%.
Гладкие трубки выгоднее.
4. Тепловой расчет аппарата
Принимаем скорость нагреваемого теплоносителя , равной 1,5 м/с.
Необходимое сечение канала можно определить из уравнения сплошности:
,
где G2 – расход греющего теплоносителя, кг/с;
-принятая скорость нагреваемого теплоносителя, м/с;
- плотность греющего теплоносителя, взятая по средней температуре, oC.
Тогда необходимое сечение канала будет:
,
где G2=121,5 кг/с;
м/с;
кг/м3
м2.
Определяем приблизительное число труб в одном ходу:
,
где м2;
м, внутренний диаметр труб.
шт.
Найдем общее число трубок:
,
где число ходов в аппарате.
шт.
Т.к. аппарат водоводяной то выбираем компоновку по концентрическим окружностям.
Точное число трубок определяем исходя из табл. 23.1 [6] шт.
Окончательное число труб принимаем:
,
где шт., количество трубок на диаметре, которое вычитается за счет перегородки.
шт.
данные расчеты подтверждает компоновка приложение 1.
Определяем приблизительный внутренний диаметр обечайки:
,
где S шаг разбивки труб в трубной решетке, т. к. трубы крепятся в решетке развальцовкой то
мм
коэффициент заполнения площади трубной решетки трубами (зависит от числа ходов по трубному пространству), т. к.
то
.
мм
Конечно диаметр принимаем по табл. 15.1 [6] Dвн=800 мм.
Далее уточняем скорость нагреваемого теплоносителя:
,
где количество труб в одном ходу
,
шт.
м/с.
Определяем площадь межтрубного сечения для греющего теплоносителя:
,
где мм толщина перегородки в межтрубном пространстве, принятая конструктивно.
м2.
Определяем скорость греющего теплоносителя в межтрубном пространстве:
,
м/с.
Определяем смоченный периметр по греющему теплоносителю:
,
мм.
Определяем эквивалентный диаметр по греющему теплоносителя:
,
мм.
В результате перерасчета задаемся другой температурой стенки oC по этой температуре определяем Prст=3,848 по таблице 11 [1].
Определим число Рейнольдса для нагреваемого теплоносителя:
,