124219 (689923), страница 2
Текст из файла (страница 2)
где G2=121,5 кг/с;
м/с;
кг/м3
м2.
Определяем приблизительное число труб в одном ходу:
,
где м2;
м, внутренний диаметр труб.
шт.
Найдем общее число трубок:
,
где число ходов в аппарате.
шт.
Т.к. аппарат водоводяной то выбираем компоновку по концентрическим окружностям.
Точное число трубок определяем исходя из табл. 23.1 [6] шт.
Окончательное число труб принимаем:
,
где шт., количество трубок на диаметре, которое вычитается за счет перегородки.
шт.
Определяем приблизительный внутренний диаметр обечайки:
,
где S шаг разбивки труб в трубной решетке, т. к. трубы крепятся в решетке развальцовкой то
мм
коэффициент заполнения площади трубной решетки трубами (зависит от числа ходов по трубному пространству), т.к.
то
.
мм
Конечно диаметр принимаем по табл. 15.1 [6] Dвн=900 мм.
Далее уточняем скорость нагреваемого теплоносителя:
,
где количество труб в одном ходу
,
шт.
м/с.
Определяем площадь межтрубного сечения для греющего теплоносителя:
,
где мм толщина перегородки в межтрубном пространстве, принятая конструктивно.
м2.
Определяем скорость греющего теплоносителя в межтрубном пространстве:
,
м/с.
Определяем смоченный периметр по греющему теплоносителю:
,
мм.
Определяем эквивалентный диаметр по греющему теплоносителя:
,
мм.
Определим число Рейнольдса для нагреваемого теплоносителя:
,
.
Определим число Рейнольдса для греющего теплоносителя:
,
.
Определим числа Нуссельта для греющего и нагреваемого теплоносителей по формуле Михеева, так как режим течения турбулентный :
,
где - число Прандтля, принимается по таблице 1;
;
.
Определим коэффициент теплоотдачи для греющего теплоносителя:
,
Вт/(м2К).
Определим коэффициент теплоотдачи для нагреваемого теплоносителя:
,
Вт/(м2К).
Проверяем температуру стенки:
,
oC.
Полученная температура незначительно отличается от предварительно принятой.
Определим коэффициент теплопередачи:
,
где Вт/(мК)) коэффициент теплопроводности трубки по табл. 7 [1],
м, толщина стенки трубки.
коэффициент загрязнения
Вт/(м2К).
Определим расчетную поверхность теплообмена аппарата;
,
м2.
Определим активную длину трубок:
,
где средний диаметр,
м.
м.
Определим конструктивность аппарата:
,
условие соблюдается.
Гидравлический расчет для гладких труб.
Для скорости нагреваемого теплоносителя , равной 1 м/с:
Определим полную длину трубок:
,
где м толщина трубной решетки принятая конструктивно.
м высота выступа трубок принятая конструктивно.
м.
При турбулентном режиме движения воды коэффициент трения по трубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по трубному пространству:
,
где количество ходов по трубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по трубному пространству:
,
где сумма коэффициентов местных сопротивлений, где
вх – коэффициент местного сопротивления при входе потока в камеру,
принимаем вх=1,5;
вых – коэффициент местного сопротивления при выходе потока из камеры, принимаем вых=1,5;
п – коэффициент местного сопротивления при повороте потока на 180, принимаем п=2,5;
вх.тр – коэффициент местного сопротивления при входе потока в трубки, принимаем вх=0,5;
вых.тр – коэффициент местного сопротивления при выходе потока из трубок, принимаем вых=1,0;
Па.
Определим потерю давления по трубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения воды по трубному пространству:
,
Вт.
При турбулентном режиме движения воды коэффициент трения по межтрубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по межтрубному пространству:
,
где количество ходов по межтрубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по межтрубному пространству:
,
где сумма коэффициентов местных сопротивлений
Па.
Определим потерю давления по межтрубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения конденсата по межтрубному пространству:
,
Вт.
Для скорости нагреваемого теплоносителя , равной 2 м/с:
Определим полную длину трубок:
,
где м толщина трубной решетки принятая конструктивно.
м высота выступа трубок принятая конструктивно.
м.
При турбулентном режиме движения воды коэффициент трения по трубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по трубному пространству:
,
где количество ходов по трубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по трубному пространству:
,
где сумма коэффициентов местных сопротивлений, где
вх – коэффициент местного сопротивления при входе потока в камеру, принимаем вх=1,5;
вых – коэффициент местного сопротивления при выходе потока из камеры, принимаем вых=1,5;
п – коэффициент местного сопротивления при повороте потока на 180, принимаем п=2,5;
вх.тр – коэффициент местного сопротивления при входе потока в трубки, принимаем вх=0,5;
вых.тр – коэффициент местного сопротивления при выходе потока из трубок, принимаем вых=1,0;
Па.
Определим потерю давления по трубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения воды по трубному пространству:
,
Вт.
При турбулентном режиме движения воды коэффициент трения по межтрубному пространству находим по формуле Блазиуса:
,
.
Определим потери давления на трение по межтрубному пространству:
,
где количество ходов по межтрубному пространству.
Па.
Определим потери давления на местные сопротивления в аппарате по межтрубному пространству:
,
где сумма коэффициентов местных сопротивлений
Па.
Определим потерю давления по межтрубному пространству:
,
Па.
Определим мощность, потребляемую насосом для перемещения конденсата по межтрубному пространству:
,
Вт.
Расчет теплообменника с кольцевыми выступами.
Принимаем скорость нагреваемого теплоносителя , равной 2 м/с (т.к. мы задаемся той же скоростью то расчеты до определения чисел Нуссельта такие же как и для гладких труб).
Для определения среднего коэффициента теплоотдачи (для капельных жидкостей) при d/D=0,935 и t/D=0,5 используется уравнение подобия для критерия Нуссельта следующего вида (формула 6.33 [2]):
,
где .
В результате перерасчета задаемся другой температурой стенки oC по этой температуре определяем Prст=4,865 по таблице 11 [1].
Определим число Нуссельта для нагреваемого теплоносителя:
,
.
Определим число Нуссельта для греющего теплоносителя по формуле Михеева, так как режим течения турбулентный :
,
.
Определим коэффициент теплоотдачи для греющего теплоносителя:
,
Вт/(м2К).
Определим коэффициент теплоотдачи для нагреваемого теплоносителя:
,
Вт/(м2К).
Проверяем температуру стенки:
,
oC.
Полученная температура незначительно отличается от предварительно принятой.
Определим коэффициент теплопередачи:
,
где Вт/(мК) теплопроводность латуни,
м
коэффициент загрязнения.
Вт/(м2К).
Определим расчетную поверхность теплообмена аппарата;
,
м2.
Определим активную длину трубок:
,
где средний диаметр,
м.
м.
Определим конструктивность аппарата:
,
условие соблюдается.
Принимаем скорость нагреваемого теплоносителя , равной 1 м/с (т.к. мы задаемся той же скоростью то расчеты до определения чисел Нуссельта такие же как и для гладких труб).
Определим число Нуссельта для нагреваемого теплоносителя:
,
.
Определим число Нуссельта для греющего теплоносителя по формуле Михеева, так как режим течения турбулентный :
,
.
Определим коэффициент теплоотдачи для греющего теплоносителя:
,
Вт/(м2К).
Определим коэффициент теплоотдачи для нагреваемого теплоносителя:
,
Вт/(м2К).
Проверяем температуру стенки:
,
oC.
Полученная температура незначительно отличается от предварительно принятой.
Определим коэффициент теплопередачи:
,
где Вт/(мК) теплопроводность латуни,
м
коэффициент загрязнения.
Вт/(м2К).
Определим расчетную поверхность теплообмена аппарата;
,
м2.
Определим активную длину трубок:
,
где средний диаметр,
м.
м.
Определим конструктивность аппарата:
,
условие соблюдается.
Гидравлический расчет для кольцевых выступов.
Для скорости нагреваемого теплоносителя , равной 1 м/с: