124213 (689919), страница 3
Текст из файла (страница 3)
2.4.2 Определяем минимально допустимый диаметр ведущего шкива d1min в зависимости от вращающего момента на валу двигателя Тдв=30 Н/м и выбранного сечения ремня «А»
d1min=112мм
2.4.3 Задаться расчётным диаметром ведущего шкива
d1=112 мм;
2.4.4 Определяем диаметр ведомого шкива ,d2 мм;
d2= d1*u(1-έ),(57)
где, u-передаточное число ремённой передачи, u=3;
έ-коэффициент скольжения, έ=0, 01 ;
d2= 336*0, 99=333,
по стандартному ряду выбираем d2=315мм;
2.4.5 Определяем фактическое передаточное число uф и проверяем его отклонение u∆,%, от заданного u, мм;
uф= d2/ d1(1- έ) (58)
uф= 333/112=3
∆u = uф-u/u*100
3%(59)
∆u =(3-3)/3 *100 = 0 (отклонений нет)
2.4.6 Определяем ориентировочное межосевое расстояние а, мм;
а≥0,55*(d1+d2)+h,
где, h-высота сечения клинового ремня, h=8 ;
а≥0,55*(112+315)+8=242, 85
2.4.7 Определяем расчётную длину ремня L, мм;
L =2а+π/2*(d1+d2)+( d2-d1)2/ 4а (60)
L =2*243+3,14/2*(427)+203/4*243=1198 мм;
По стандартному ряду длина ремня выбирается 1250мм;
2.4.8 Уточняем значение межосевого расстояния по стандартной длине;
а=⅛[2 L - π(d1+d2)+ √{(2l-π(d1+d2)2)-8*(d2-d1)2}](61)
а=⅛[2*1250-3.14*427+ √{(2*1250-3.14*(427)2}-8*(203)2}]=270 мм
2.4.9 Определяем угол обхвата ремнём ведущего шкива α1, град;
α1=180˚-57˚* d2-d1/a; α
1200(62)
α1=180˚-57˚*203/270=1370
2.4.10 Определяем скорость ремня υ, м/с;
Допустимая скорость для узкоклинового ремня [υ]=40 м/с;
[υ]≥ υ =π* d1*n1/60*103 ,(63)
где d1 и n1 диаметр ведущего шкива и его частота вращения
υ=3.14*112*355/60*103=5, 6 м/с
[υ] ≥ υ
2.4.11 Определяем частоту пробегов ремня U, с-1;
[U]≥ U= υ/ L (64)
где [U] - допускаемая частота пробегов [U]=30 с-1; соотношение [U]≥ U условно выражает долговечность ремня и его соблюдение гарантирует срок службы 1000-5000 часов.
U=5, 6/1000=0,0056 с-1
2.4.12 Определяем допускаемую мощность, передаваемую одним клиновым ремнём, [Pn] кВт;
[Pn]= [P0] Cр*Сα*СL*Cz, (65)
где C-поправочные коэффициенты: Cр = 1, Сα = 0, 86, СL = 1, Cz = 0, 9;
[P0] – приведённая мощность, допускаемая одним клиновым ремнём, [P0]=1,05
Cр – для двухсменной работы минус 0, 1
[Pn]=1, 05*0,9*0,89*1*0, 9=0, 75
2.4.13 Определяем количество клиновых ремней, Z;
Z=Рном/Рn, Z
5 (66)
Z=3/1, 08=4
2.4.14 Определяем силу предварительного натяжения, Fo, Н;
Fo=850* Рном* СL / Z *υ* Cр* Сα (67)
Fo=850*3*1 / 4*5, 6*0,89*0,9=142 Н;
2.4.15 Определяем окружную силу, передаваемую комплектом клиновых ремней, Ft, Н;
Ft= Рном*103/ υ (68)
Ft=3*103/5, 6=535 Н;
2.4.16 Определяем силы натяжения ведущей F1 и ведомой F2 ветвей, Н:
F1= Fo+ Ft/2 Z (69)
F2= Fo- Ft/2 Z
F1=142+535/8=208 Н
F2=142-535/8=73, 2 Н
2.4.17 Определяем силу давления ремней на вал, Fon, Н;
Fon =2* Fo* Z*sin α1 /2 (70)
Fon =2*142*4*sin137/2=1056 Н;
Проверочный расчёт
2.4.18 Проверяем прочность одного клинового ремня по максимальным напряжениям в сечении ведущей ветви, σmax, Н/мм2;
σmax=σ1+σu+σv≤ [σ] (71)
σ1-напряжение растяжения, Н/мм2
σ1 = Fo/А + Ft /2А Z . Выбираем А = 81 (по таблице) (72)
σu-напряжение изгиба, Н/мм2
σu = Еu h/d1, (73)
где Еu – модуль продольной упругости, Еu = 80 мм2
σv-напряжение от центробежных сил, Н/мм2;
σv = Р υ2 *10-6, (74)
где Р – плотность ремня, Р = 1300 кг/м3
[σ]-допустимое напряжение растяжения ремня,
[σ] = 10 Н/мм2
σ1 = 142/81 * 535/2*81*4 = 2, 4 Н/мм2
σu = 80 /8*112 = 5, 7 Н/мм2
σv = 1300*5, 6*10-6 = 0, 007 Н/мм2
σmax=2, 4+5,7+0,007=8, 107 Н/мм2
σmax≤[σ]
Составим табличный ответ;
Таблица 7
| Параметр | Значение | Параметр | Значение |
| Тип ремня | «А» | Чистота пробегов ремня, U | 0,0056 с-1 |
| Сечение ремня | нормальное | Диаметр ведущего шкива, d1 | 112 мм |
| Количество ремней, Z | 4 | Диаметр ведомого шкива, d2 | 315 мм |
| Межосевое расстояние | 243 мм | Максимальное напряжение, σmax | 8, 1 Н/мм2 |
| Длина ремня, L | 1250 мм | Предварительное натяжение, Fo | 142 Н |
| Угол обхвата малого шкива, α1 | 1370 | Сила давления ремня на вал, Fon | 1056 Н |
2.5 Нагрузки валов редуктора
Цель:
-
Определить силы в зацеплении редукторной передачи
-
Определить консольные силы
-
Построить силовую схему нагружения валов
Определим силы в зацепление закрытых передач
Окружная сила
Ft1=Ft2 , Ft2=2T2*10³/d² (75)
Ft2=2*373,5*10³/370=2018 Н
Радиальная сила
Fr1=Fr2 , Fr2=Ft2*tg α/cos β (76)
Fr2=2018*tg 20/cos8=741, 7 Н
Осевая сила
Fа1=Fа2 Fа2=Ft2*tg β (77)
Fа2=2018*tg 8=284 Н
Определим консольные силы
для открытой передачи клиноремённого типа
Fоп=2Fo Z sin α1/2 (78)
Fоп=2*142 *4*sin 137/2=1057 H
Для муфты на тихоходном валу
Fм 2=125*√T2 (79)
Fм2=125*√373, 5=2416 Н
Таблица 8
| Параметр | Шестерня | Колесо | |
| Ft, Н Fr, Н Fа, Н | 2018 741, 7 284 | ||
| Fм, Н | Fоп, Н | 2416 | 1057 |
| Т, Н/м | 86, 43 | 373, 5 | |
| ω, с-1 | 33 | 7, 4 | |
2.6 Разработка чертежей общего вида редуктора
Цель:
-
Выбрать материал валов
-
Выбрать допускаемые напряжения на кручение
-
Выполнить проектный расчёт валов на чистое кручение
-
Выбрать тип подшипников
-
Разработать чертёж общего вида редуктора
Выбор материала валов
Выбираем сталь 45 (σv = 780 Н/мм2; σт = 540 Н/мм2; σ-1 = 335 Н/мм2)
Выбор допускаемых напряжений на кручение
Допускаемые напряжения на кручения [τk]:
Для быстроходного вала, [τk]=10 Н/мм²,
Для тихоходного, [τk]=15 Н/мм²,
Определим геометрические параметры ступеней быстроходного вала
d1=
, (80)
где Mk=Т – крутящий момент, равный вращающему моменту для шестерни, Н*м
d1=
=35 мм
d2=d1+2t, (81)
где t = 2, 5 мм
d2=35+5=40мм
L2=1.5d2 (82)
L2=1.5*40=60 мм
d3=d2+3.2r, (83)
где r = 2, 5 мм
d3=40+3.2*2.5=48 мм
L3 определяется графически на эскизной компоновке (L3 = 84 мм)
d4=d2 (84)
d4=40 мм
L4=B+c, (85)
где B-ширина подшипника, мм
c- фаска, мм
L4=23+1, 6=24, 6 мм
Определим размеров тихоходного вала
d1=
(86)
d1=
= 50 мм
L1=(1, 0…1, 5)d1 - под полумуфту (87)
L1=1, 2*50=60 мм
d2=d1+2t (88)
d2=50+2*2, 8=55, 6 мм
Принимаем 55 мм
L2=1.25d2 (89)
L2=1.25*55=68, 75 мм
d3=d2+3.2r (90)
d3=55+3.2*3=64, 6 мм
L3 определяется графически на эскизной компоновке (L3 = 71 мм)
d4=d2 (91)
d4=55 мм
L4=B+c (92)
где B-ширина подшипника, мм
c- фаска, мм
L4=29+2 = 31 мм
Диаметр ступицы
dст=100, 13 мм
Длина ступицы
Lст=71, 06 мм = 71 мм
d5 = d3 + 3f (93) d5 = 64+3*2 = 70 мм
L5 = 10 мм
Втулка: ширина 40 мм; внутренний диаметр 66 мм; наружный диаметр 76 мм
Выбор подшипников качения
Предварительный выбор для тихоходного и быстроходного валов.
Выбираем подшипник радиальный средней серии для быстроходного вала 308; для тихоходного вала – 311
Таблица 9
| Подшипник | d, мм | D, мм | B, мм | r, мм | Cr, кН | Cor, кН |
| 308 | 40 | 90 | 23 | 2, 5 | 41 | 22, 4 |
| 311 | 65 | 120 | 29 | 3 | 77, 5 | 41, 5 |
x =
=
= 10 мм (94)
y = 4x = 40 мм (95)
f = D/2 +x = 90/2 +10 = 55 мм (96)
l = L-B = lT = LT-B = 149-29 = 120 мм (97)
lб = Lб-В = 137-23 = 114 мм (98)
lоп = l1б / 2 + f2 – В/2 = 21+60-11, 5 = 69, 5 мм (99)
2.7 Расчетная схема валов редуктора
Цель:
-
Определить радиальные реакции в опорах подшипников быстроходного и тихоходного валов
-
Построить эпюры изгибающих и крутящих моментов
-
Определить суммарные изгибающие моменты
-
Построить схему нагружения подшипников
Определим реакции в опорах
Построим эпюру изгибающих и крутящих моментов быстроходного вала
-
Вертикальная плоскость.
Определяем опорные реакции
Ft1=2018 H
Fa1=284 H
Fr1=741, 74 H
Fon=1057 H
d1=0, 081 м
Lоп=0, 0695 м
lб=0, 144 м
М1=0;
Fr1* lб/2+ Fa1 d1/2-Rby lб+Fon *( Lоп+ lб) =0
Rby = [ Fr1*lб/2 + Fa1 d1/2 + +Fon*( Lоп+ lб)] / lб =
(741, 7 - 0, 072+284*0, 0405+1057*0, 2135) /0, 144 = 2017, 87 Н
М3 = 0











