124155 (689871), страница 3
Текст из файла (страница 3)
tср=tп-tср=140-99=41 0С. (2.3)
Разность температур теплоносителя и стенки t1, 0С:
t1=(R1/R)tср=(0,6)99=59,4 0С (2.4) 1 Разность температур стенки и продукта t2, 0С:
0С. (2.5)
Температура стенки со стороны теплоносителя tст1, 0С:
tст1=tп-t1=140-59,4=80,6 0С. (2.6)
Температура стенки со стороны продукта tст2, 0С:
tст2=tср+t2=41+33,66=74,66 0С. (2.7)
Температура пленки конденсата теплоносителя tпл, 0С:
tпл=0,5(tп+tст1)=0,5(140+80,6) =110,3 0С. (2.8)
Теплофизические свойства пленки конденсата (при температуре пленки tпл=110,3 0С) (соответственно [6]): динамический коэффициент вязкости жидкости пл=0,22810-3 (Пас), удельная теплоемкость cпл=4,2103
, коэффициент теплопроводности пл=0,682
и плотность пл=950
. Удельная теплота конденсации пара (при температуре tп=140 0С) r=2150103
(соответственно [6]).
Коэффициент теплоотдачи от греющего пара к стенкам теплообменных трубок 1,
:
(2.9)
.
Теплофизические свойства продукта, который нагревается (при температуре tср=41 0С) (соответственно [6]): динамический коэффициент вязкости пр=0,71910-3 (Пас), коэффициент объемного расширения пр=0,39710-3
, удельная теплоемкость cпр=4159
, коэффициент теплопроводности пр=0,634
и плотность пр=991
.
Теплофизические свойства пристеночного слоя продукта (при температуре tст2=74,66 0С) (соответственно [6]): коэффициент динамической вязкости ст=0,410-3 (Пас), удельная теплоемкость cст=4225
, коэффициент теплопроводности ст=0,669
и плотность ст=975
.
Критерий Рейнольдса (Re) для потока продукта:
(2.10)
Критерий Прандтля для потока продукта (Pr) и для пристеночного слоя продукта (Prст):
, (2.11)
. (2.12)
Критерий Нуссельта (Nu) (для случая развитого турбулентного движения жидкостей в трубах и каналах (Re>10000) по формуле (1.8)):
Nu=
Nu=
=355.
Коэффициент теплоотдачи от стенки теплообменных труб к продукту 2,
:
(2.13)
Термическое сопротивление стенки ( без учета термического сопротивления загрязнений) Rст,
:
Rст=
,2 (2.14)
Общий коэффициент теплопередачи между средами К,
(по формуле (1.7)):
.
Тепловая нагрузка аппарата (количество тепла, которое передается через поверхность теплообмена от теплоносителя до продукта) Q, (Вт) (по формуле (1.4)):
Q=Gcпр(t2-t1)=2,84159(70-12)=675422 Вт.
Необходимая поверхность теплообмена F, (м2) (по формуле (1.1)):
(м2).
Затрата теплоносителя (греющего пара) Gгр,
:
. (2.15) 3
2.2 Конструктивный расчет аппарата
Площадь сечения всего потока продукта (площадь сечения пучка труб) f, (м2):
(м2), (2.16)
Количество труб n1 в трубном пучке:
(2.17)
принимается n1= 3 теплообменных трубы в каждом ходе по трубному пространству.
Уточнённое значение скорости движения продукта w,
:
. (2.18)
Расчетная длина одной трубки в трубном пучке L, (м):
(м). (2.19)
Количество ходов теплообменника z:
, (2.20)
принимается z=4 хода по трубному пространству кожухотрубного теплообменника.
Необходимое количество теплообменных труб в трубной решетке n:
n=zn1=43=12 труб. (2.21)
Диаметр трубной решетки Dр, (мм):
(мм), (2.22) 4
Внутренний диаметр кожуха теплообменника D, (мм):
D=t(b-1)+4d=59,4(5-1)+430=358 (мм), (2.23)
принимается для изготовления кожуха теплообменника труба 360х5 мм.
Живое сечение межтрубного пространства fмт, (м2):
fмт=0,785((D-2s) 2-nd 2)=
=0,785((0,360-20,005)2-120,032)=87,6810-3 (м2). (2.24)
По уравнению объемных затрат V,
:
, (2.25)
определяются диаметры патрубков d, м, для рабочих сред:
. (2.26)
Диаметр патрубка для входа пара в аппарат, dп, (м):
(м).
Диаметр патрубка для выхода конденсата пара, dк, (м):
(м).
Диаметр патрубка для входа продукта в аппарат, dвх, (м):
(м).
Диаметр патрубка для выхода продукта из аппарата, dвих, (м):
(м).
2.3 Гидравлический расчет аппарата
Полное гидравлическое сопротивление теплообменного аппарата, Р (Па):
(2.27) 5
Для изотермического турбулентного движения в гидравлично - шероховатых трубах (соответственно /6/):
(2.28) 6
Сумма коэффициентов местных сопротивлений г в аппарате:
, (2.29) 7
(Па)
Мощность привода насоса N, (Вт), необходимая для перемещения продукта по трубному пространству теплообменного аппарата:
(Вт) (2.30) 8
V=
. (2.31)
N=
(Вт).
2.4 Расчеты на прочность
Допустимые напряжения при расчете по предельным нагрузкам емкостей и аппаратов, которые работают при статических одноразовых нагрузках, определяются согласно ГОСТ 14249-89.
Расчет на прочность гладкой цилиндрической обечайки кожуха, нагруженной внутренним избыточным давлением, проводится согласно ГОСТ 14249-89.
| | |
| Рисунок 11 – | Расчетная схема обечайки кожуха теплообменника |
Исполнительная толщина стенки обечайки s, (мм):
ssр+с (2.32) 9
(мм), (2.33) 10
с=с1+с2+с3 (2.34) 11
где с1=П=0,115=1,5 (мм), (2.35) 12
с=1,5+0+0=1,5 (мм),
Исполнительная толщина стенки обечайки s, (мм):
ssр+с=0,41+1,5=1,91 (мм).
Соответственно приведенным в ГСТУ 3-17-191-2000 значений минимальным толщинам стенок обечаек и днищ принимается s=5,0 мм.
Внутреннее избыточное давление, которое допускается [р], (МПа):
(МПа) (2.36)
Условие применения расчетных формул (для обечаек и труб при D (200 мм):
, (2.37)
условие выполняется.
3 Расчеты и выбор вспомогательного оборудования.
3.1 Выбор насоса
В соответствии с технологической схемой участка пастеризации продукта для перекачивания продукта выбирается шесть центробежных насосов марки Х20/18 с параметрами: подача Q= 5,510-3
, напор Н= 10,5 (м), частота вращения вала n= 48,3 (с-1), коэффициент полезного действия н=0,6 , приводной электродвигатель типа АО2-31-2 мощностью Nн=3квт.
Выбранный насос разрешает достичь геометрической высоты подъема жидкости HГ11 м с учетом потерь напора на преодоление гидравлического сопротивления теплообменного аппарата Р=84453 Па.
3.2 Расчет объема накопительного резервуара и уравнительного бака для пастеризованного продукта.
Номинальный объем емкости накопительного резервуара и уравнительного бака для исходного раствора пастеризованного продукта и конденсата:
(м3), (3.1) 13
Выбирается пять горизонтальных емкостных аппарата.
4 Новизна принятых конструктивных решений
Теплообменные аппараты составляют многочисленную группу теплосилового оборудования, занимая значительные производственные площади и превышая зачастую 50% стоимости общей комплектации в теплоэнергетике, химической, нефтеперерабатывающей и пищевой промышленности, и ряде других отраслей. Поэтому правильный выбор теплообменников представляется исключительно важной задачей.
К настоящему времени можно выделить два наиболее распространенных типа теплообменных аппаратов - кожухотрубные и пластинчатые.
Широко известные традиционные кожухотрубные аппараты, обладая рядом преимуществ, вместе с тем имеют и очень существенные недостатки. В частности - неблагоприятные массогабаритные характеристики, низкие показатели надежности. Эти аппараты почти всегда требуют применения грузоподъемного оборудования, предполагают наличие значительных свободных площадей и далеко не всегда могут быть смонтированы, а тем более заменены при ремонте без демонтажа конструкций здания. Применение в этих аппаратах латунных и гладкостенных труб дополняет неприглядную техническую характеристику. Латунь при определенных условиях (которые почти всегда создаются в теплообменниках, применяемых в отоплении и горячем водоснабжении) подвержена обесцинкованию даже в пресной воде. Цинк попадает в воду горячего водоснабжения, кроме того, происходит разрушение стенок труб.
Но даже и когда эти условия не создаются, усиливается влияние другого отрицательного фактора - образование накипи и иных отложений на стенках труб, что приводит к потере работоспособности аппаратов по критерию "тепловая эффективность".
Следует принять во внимание и достаточно высокие цены на эти аппараты вследствие использования большого количества цветного металла.
На сегодняшний день кожухотрубные теплообменники на порядок уступают пластинчатым теплообменникам.
Сравнение пластинчатых теплообменников с кожухотрубными теплообменниками (см. рис.13)
О
Рисунок 13 - Теплообменники
бычно кожухотрубные теплообменники эффективно используются при давлениях теплоносителя более 25 кгс/см2. Но при давлениях до 25 кгс/см2 пластинчатые теплообменники являются значительно более эффективными.При аналогичных параметрах пластинчатые теплообменники в 3-6 раз меньше по габаритам и составляют 1/6 от веса кожухотрубных теплообменников. Таким образом, экономятся не только площади под установку, но и снижаются начальные затраты. Конструкция кожухотрубного теплообменника обеспечивает гораздо меньшие коэффициенты теплопередачи, чем пластинчатого при аналогичной потере давления. Даже в самых лучших кожухотрубных теплообменниках значительные поверхности труб находятся в мертвых зонах, где отсутствует теплопередача. В отличие от кожухотрубных пластинчатые теплообменники могут быть легко разобраны для обслуживания и ремонта без демонтажа подводящих трубопроводов. Для обслуживания пластинчатых теплообменников требуется площадь в 3-6 раз меньше, чем для кожухотрубных.
Основные преимущества использования пластинчатых теплообменников.
1. Экономичность и простота обслуживания.















