123976 (689741)
Текст из файла
Курсовая работа
Тема: Процедура расчета и создания стержней с заданными характеристиками
Содержание
1 Основные аспекты создания стержней
1.1 Растяжение в центре и по бокам
1.2 Расчет статических стержневых систем
1.3 Расчет основных переменных
2 Оценка параметров закручивания
3 Процедура создания стержней
3.1 Создание стальной балки
3.2 Выбор материала
3.3 Создание стержня определенной жесткости
1 Основные аспекты создания стержней
1.1 Растяжение в центре и по бокам
Для заданного ступенчатого стержня (рис. 1,а) при осевых нагрузках F1=1qa, F2=2qa требуется:
1. Определить реактивную осевую силу в опорном сечении.
2. Определить продольные силы Nz, нормальные напряжения z и перемещения w в характерных точках и построить их эпюры.
3. Определить опасное сечение и подобрать необходимую площадь A стержня из условия прочности на растяжение или сжатие.
Принять: α1=3, α2=4, а=1 м, q=600 кН/м, [σр]=160 МПа, [σс]=60МПа
Решение
1. Определение опорной реакции.
Составляем уравнение равновесия в проекции на ось z:
ΣZi=0
RB qa + 4qa + q2a + 3qa = 0
RB = qa + 4qa q2a 3qa = 0
2. Построение эпюр продольных сил, напряжений и перемещений.
Эпюра Nz. Строится по формуле:
N = N qz
Знак «плюс» соответствует погонной нагрузке, вызывающей растяжение бруса, а знак «минус» берется в случае сжатия. В сечениях где приложены сосредоточенные силы (сеч. C и E), на эпюре Nz имеют место скачки. Если сосредоточенная сила вызывает растяжение, то скачок вверх (сеч. E), в случае сжатия – скачок вниз (сеч. С). На участках BC и CD продольная сила изменяется по линейному закону (qz0), а на участке DE продольная сила постоянна (qz=0). Вычисляем значения продольной силы в характерных точках и строим эпюру Nz (рис. 1,б)
NE = 3qa
NED = NDE = 3qa
NDC = NDE + q2a = 3qa + q2a = 5qa
NC = NDC – 4qa = 5qa – 4qa = qa
NB = NC – qa = qa – qa = 0
Эпюра σz. Напряжение в поперечных сечениях связаны с продольной силой соотношением
σz =
Учитывая, что брус имеет ступенчато – переменное сочетание, характер распределения нормальных напряжений по длине бруса остается таким же как для продольной силы. Однако в местах резкого изменения формы бруса (сеч. C и D) на эпюре σz, в отличие от Nz, возникают скачки, связанные с изменением площади поперечного сечения. Вычисляем напряжения в характерных точках и строим эпюру σz (рис. 1,в)
σE =
σDE = σE =
σD =
σCD =
σC =
Эпюра w. Она строится по формуле
w(z) = w0 +
где w0 перемещение в начале участка;
z площадь эпюры σz от начала участка до рассматриваемого сечения.
При отсутствие погонной нагрузки (уч. DE) напряжения постоянны, а перемещения изменяются по линейному закону. На участках с погонной нагрузкой напряжения изменяютяс по линейному закону, а перемещения – по квадратичному (уч. BC и CD). Вычисляем перемещения в характерных точках и сторим эпюру w (рис. 1,г)
wB = 0
wC = wB +
wD = wC +
wE = wD +
Подбор сечений.
Из условия прочности на растяжение
σmax [σр]
[σр]
Aр
см2
Площадь сечения работающего на сжатие Ac = 0, т.к. σmin =0. Окончательно принимаем A=Aр=187,5 см2.
Исходя из найденной площади сечения, определим полное удлинение ступенчатого бруса
l=wE=
м =1,5 мм
1.2 Расчет статических стержневых систем
Для заданной стержневой системы (рис. 2, а) требуется:
1. Определить усилия в стержнях и подобрать их сечения из двух равнобоких уголков по методу допускаемых напряжений, обеспечив заданное соотношение площадей A2/A1=1,6. Допускаемое напряжение принять равным [σ] = 160 МПа.
2. При принятых размерах сечений стержней определить грузоподъемность конструкции по методу допускаемых нагрузок.
3 Оценить в процентах дополнительный резерв грузоподъемности, получаемый при переходе от метода допускаемых напряжений к методу допускаемых нагрузок.
Принять: F=500 кН
Решение
1. Определение усилий в стержнях.
Данная система является однажды статически неопределимой (4 неизвестных при 3 уравнениях статики), поэтому в дополнение к уравнениям статики необходимо составить одно уравнение совместности деформаций.
Уравнение статики
Σm0=0
N1·2a·cos45° + N2·4a·cos30° - 3a·F = 0
N1
+ N2 2
=3F
Уравнение совместности деформаций. Из подобия треугольников ABB1 и BCC1 имеем:
Заменяя по закону Гука деформации через усилия и подставляя в последние уравнение, получим
Решая совместно уравнения (1) и (2), находим усилия в стержнях
2. Подбор сечений стержней.
Следует заметить, что подобранные сечения должны одновременно удовлетворять и условию прочности, и заданному соотношению площадей. Чтобы удовлетворить обоим названым условиям, сопоставим два варианта.
По первому варианту сечение 1-го стержня подберем из условия прочности, а 2-го – исходя из заданного соотношения площадей, т.е.
см2
см2
По второму варианту из условия прочности находится сечение 2-го стержня, а из заданного соотношения – сечение 1-го
см2
см2
Окончательно принимаем второй вариант, так как он обеспечивает и прочность обоих стержней, и заданное соотношение площадей. По таблице сортамента для равнополочных уголков в соответствие с ГОСТ 8509-86 принимаем:
для 1-го стержня – 2 уголка 70706 (А1=2·8,15=16,3 см2)
для 2-го стержня – 2 уголка 90907 (А2=2·12,3=24,6 см2)
3. Определение грузоподъемности конструкции по методу допускаемых нагрузок.
Составляем уравнения предельного равновесия.
кН
Следовательно, при переходе от одного метода допускаемых напряжений к методу допускаемых нагрузок можно повысить грузоподъемность конструкции в
раза или на 16 %
2 Оценка параметров закручивания
Для проведения опыта на растяжение был изготовлен нормальный цилиндрический образец диаметром в расчетной части d0=16 мм и расчетной длинной l0=10·d0=160 мм. После изготовления он был подвергнут упрочняющей термической обработке (улучшению). Испытания проводились на машине УММ – 20. Геометрические параметры образца:
до опыта:
d0=16 мм
мм
после испытания:
d1=11,3 мм
мм
1. Вычисление основных механических характеристик.
Исходя из приведенной выше диаграммы растяжения образца (рис. 3), можно определить основные механические характеристики материала.
Определим характеристики прочности.
Предельная нагрузка Fт определяется следующим образом. Из точки О откладываем отрезок ОЕ, равный заданной остаточной деформации 0,2%, т.е. l0,2 = 0,002·l0 = 0,002·160 = 0,32 мм
Затем из точки Е проводим прямую, параллельную начальному прямому участку ОА. Ордината точки пересечения этой прямой с диаграммой как раз и дает искомое значение Fт=70 кН.
Наибольшая выдерживаемая образцом нагрузка, взятая непосредственно с диаграммы, равна Fmax = Fпч = 118 кН.
Определим характеристики пластичности.
Из точки D, соответствующей разрушению образца, проводим пунктирную прямую DL, параллельную начальному прямому ОА. Отрезок OL дает значение абсолютного удлинения при разрыве l=33 мм. Длина образца после разрыва l1= l0 + l=160 + 33 = 193 мм
Таблица 1 – Механические характеристики стали 30 (улучшение)
| Характеристики прочности, МПа | ||
| Предел текучести | | 348 |
| Предел прочности | | 587 |
| Характеристики пластичности, % | ||
| Относительное остаточное удлинение | | 20 |
| Относительное остаточное сужение | | 50 |
Выбор коэффициента запаса прочности и определение допускаемого напряжения
Условие прочности по методу допускаемых напряжений имеет вид
σmax [σ]
[σ] =
где σпред – предельное напряжение, т.к. материал пластичный (δ>5%), то σпред = σт =348 МПа;
[n] – нормативный коэффициент запаса прочности, который определяется по формуле
[n] = [n1]·[n2]·[n3]
где [n1] – коэффициент, учитывающий неточность в определение нагрузок и напряжений, [n1] =1;
[n3] – коэффициент условий работы, учитывающий степень ответственности детали, [n3] =1…1,51;
[n2] – коэффициент, учитывающий неоднородность материала, повышенную его чувствительность к недостаткам механической сборки, выберается из табл. 2
Таблица 2 – Коэффициент неоднородности материала
| σт / σпч | 0,45…0,55 | 0,55…0,70 | 0,70…0,9 |
| [n] | 1,2…1,5 | 1,4…1,8 | 1,7…2,2 |
Так как σт / σпч=0,593, то коэффициент неоднородности материала выбираем из второго столбца по формуле линейной интерполяции, для определения среднего значения в промежутке
По формуле (4) определяем коэффициент запаса прочности
[n] = 1·1,59·1=1,59
По формуле (3) находим величину допускаемого напряжения
[σ] =
МПа
После округления до ближайшего целого числа, кратного 10, окончательно получим [σ] =220 МПа. Это значение используется при расчете балки на прочность (задача 3.1).
Оценка параметров закручивания
Для заданного трансмиссионного вала (рис. 4,а) требуется:
1. Построить эпюру крутящего момента MК и определить требуемый диаметр вала из расчетов на прочность и жесткость.
2. Установить наиболее рациональное расположение шкивов на валу и определить диаметр вала в этом случае. Оценить в процентах достигаемую в этом случае экономию материала по сравнению с заданным расположением шкивов.
3. Построить эпюры углов закручивания для обоих вариантов, считая неподвижным левый конец вала.
Принять: М=3 кН·м, а=0,2 м, G =80 МПа, [τ]=50 МПа, [θ]=8 мрад/м
Решение
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















