123976 (689741), страница 2
Текст из файла (страница 2)
1. Определение диаметра вала.
Строим эпюру МК (рис. 4,б). Как видим, при заданном расположение шкивов наибольший крутящий момент равен МКmax =15 кН·м. Меняя местами шкивы, ищем такой вариант нагружения, при котором расчетный крутящий момент получается наименьшим. Это и будет рациональный вариант расположения шкивов. Схема нагружения рационального расположения шкивов и соответствующая ей эпюра МК представлены на рис. 5, а и б. В этом случае расчетный момент МКmax =12 кН·м, меньше чем в первом варианте.
Из условий прочности и жесткости определяем искомый диаметр:
1 вариант:
мм
мм
Следовательно, d1 = max {dпч,dж} = 124 мм. Принимаем по ГОСТ 6636-86 d1 = 130 мм. Жесткость поперечного сечения данного вала равна
МН·м2
2 вариант:
мм
мм
Следовательно, d2 = max {dпч,dж} = 118 мм. Принимаем по ГОСТ 6636-86 d2 = 120 мм. Жесткость поперечного сечения данного вала равна
МН·м2
Требуемый диаметр вала по второму варианту получается меньше, чем по первому. Тем самым переход от заданного расположения шкивов к рациональному приводит к экономии материала, равной
Построение эпюры угла закручивания φ.
Угол поворота определяется по формуле
где φ0 – угол поворота в начале участка;
ωМ – площадь эпюры крутящего момента от начала участка до рассматриваемого сечения.
Так как крутящий момент остается постоянным в пределах каждого участка, то согласно первой формуле угол φ меняется по линейному закону. Вычисляем углы поворота на границах участков и строим эпюры (рис.4,в и рис.5,в)
1 вариант:
φ0 = φА = 0
мрад
мрад
мрад
2 вариант:
φ0 = φВ = 0
мрад
мрад
мрад
3 Процедура создания стержней
3.1 Создание стальной балки
Спроектировать стальную балку (рис. 6,а) в 5 вариантах поперечного сечения: круглого, прямоугольного (h/b=2), двутаврового, из швеллеров и уголков, приняв допускаемое напряжение [σ] = 160 МПа. Оценить экономичность всех пяти сечений и начертить их в одном масштабе. Для балки двутаврового профиля построить эпюры нормальных и касательных напряжений, а также исследовать аналитически и графически напряженное состояние в точке К опорного сечения.
Принять: М = 4qa2 кН·м, F = 2qa кН, q=15 кН/м, а = 1,2 м, yк /h= – 0,1
Решение
1. Определение опорных реакций и построение эпюр Qy и Mx.
ΣYi=0
RA 2qa + q2a = 0
RA =4qa
ΣmA=0
MA 4qa2 + 2qa3aq2a2a = 0
MA = 4qa2 + 6qa2 + 4qa2 = 14qa2
Эпюра Qy. Строится по формуле
Q = Q0 ± qz
В данном случае следует взять знак «минус», так как погонная нагрузка направлена вниз. Поперечная сила постоянна на участке АВ (q=0) и изображается наклонной прямой на участке MF (q=const). Вычисляем значения Qy в характерных точках и строим ее эпюру (рис. 6,б)
QA=RA=4qa
QAB=QA=4qa
QBC=QAB – q2a=4qa – 2qa=2qa
QC=QBC – 2qa=2qa – 2qa=0
Эпюра Mx. Строится по формуле
Mx = M0 + Q0Z – 0,5qz2
Изгибающий момент изменяется по квадратичному закону на участке MF (q=const) и по линейному закону – на участке АВ (q=0). Вычисляем значения в характерных точках и строим эпюру (рис. 6,в)
MA = – 14qa2
MAВ = MA + 4qa2 = – 14qa2+ 4qa2 = – 10qa2
MВ = MAВ + 4qa2 = – 10qa2+ 4qa2 = – 6qa2
MВС = MВ + 6qa2 = – 6qa2+ 6qa2 = 0
Расчетный изгибающий момент равен
Mрас = |MA| = 14qa2 = – 14·15·103·1,2 = 302,4 кН·м
Подбор сечений.
Из условий прочности по нормальным напряжениям определяем требуемый момент сопротивления поперечного сечения по кторому подбираем конкретные сечения
см3
Круг:
см
Принимаем по ГОСТ 6636-86 нормализованное значение d0=270 мм, тогда
см3
Прямоугольник (h/b=2):
см
Ближайшее меньшее стандартное значение равно b0=140 мм. При этом балка будет работать с перенапряжением, равным
что удовлетворяет требованию, и для которого
см2
Двутавр. По ГОСТ 8239-89 выбираем двутавр № 55 для которого
=2035 см3, A3=118 см2.
Три швеллера. По ГОСТ 8240-89 выбираем три швеллера № 36, для которых
=3·601=1803 см3, A4=3·53,4=160,2 см2.
Неравнобокие уголки. Они находятся подбором, так как в сортаменте не даны значения момента сопротивления. Использую формулу
Сделав несколько попыток, выбираем восемь уголков 25016016 для которых
см3
A5=8·63б6=508,8 см2
Оценка экономичности подобранных сечений
Масса балки определяется как произведение плотности материала на ее объем m=Al , т.е. расход материала при прочих равных условиях зависит только от площади поперечного сечения А. Сравнивая массы балок
m1 : m2 : m3 : m4 : m5 = A1 : A2 : A3 : A4 : A5 = 1 : 0,68 : 0,2 : 0,28 : 0,89 заключаем, что самым неэкономичным является круглое сечение. При замене круга другими формами (прямоугольник, двутавр, три швеллера, восемь уголков) достигается экономия, равная соответственно 32%, 80%, 72% и 11%.
Исследование напряжений в опорном сечении для балки двутаврового профиля № 55 (рис. 7,а), параметры которой по ГОСТ 8239-89 равны:
h=55 см, b=18 см, d=1,1 см, t=1,65 см, Ix=55962 см4, Sx=1181 см3
Внутренние силовые факторы в опорном сечении А:
QA = 4qa=4·15·1,2 = 72 кН
MA = – 14qa2 = – 14·15·103·1,22 = – 302,4 кН·м
Эпюра σ. Нормальные напряжения в поперечном сечении изменяются по линейному закону
Вычисляем напряжения в крайних точках и строим эпюру σ (рис. 7,б)
Эпюра τ. Она строится по формуле Журавского
Находим значения τ в 4 характерных точках по высоте сечения (необходимые вычисления представлены в табл. 3) и строим касательные напряжения (рис. 7,в)
Таблица 3 – Вычисления касательные напряжений в характерных точках
| № точек | bi, мм | | | | | |
| 1,1΄ | 18 | 0 | 0 | 0 | 0 | |
| 2,2΄ | 18 | 792 | 44 | 0,04 | 0,6 | |
| 3,3΄ | 1,1 | 792 | 720 | 0,7 | 9,3 | |
| 4 | 1,1 | 1181 | 1073,6 | 1 | 14 |
Определение главных напряжений в точке К (yк /h= – 0,1):
– напряжение в поперечном сечении
МПа
МПа
– величины главных напряжений
σ1 = 35,25 МПа
σ3 = – 5,25 МПа
– ориентация главных площадок
21º
Экстремальные касательные напряжения равны по величине
МПа
и действуют на площадках, равнонаклоненных к осям 1 и 3.
3.2 Выбор материала
Согласно схеме нагружения (рис. 9,а), подобрать сечение балки (рис. 10), изготовленной из материала, неодинаково работающего на растяжение и сжатие.
Принять: М = 4qa2 кН·м, F = 2qa кН, q= 15 кН/м, а = 1,2 м,
[σр] = 40 МПа, [σс] = 70 МПа
Решение
1. Определение опорных реакций и построение эпюр Qx и Mx.
ΣmB=0
RA4a 2qaa - 4qa2 q3a3,5a = 0
RA = 4,125qa
ΣYi=0
RA 2qa - q3a+ RB = 0
RB =0,875qa
Эпюра Qy. Строится по формуле
Q = Q0 ± qz
В данном случае берем знак «минус», так как погонная нагрузка направлена вниз. Находим значения поперечной силы в характерных точках и строим ее эпюру (рис. 9,б)
QС = 0
QCA = QC –qa= – qa
QA = QCA + RA = – qa + 4,125qa = 3,125qa
QAF = QA – 2qa = 3,125qa – 2qa = 1,125qa
QFD = QAF = 1,125qa
QD = QFD – 2qa = 1,125qa – 2qa = – 0,875qa
QDB = QD = – 0,875qa
QB = QDB + RB = – 0,875qa + 0,875qa = 0
Эпюра Mx. Строится по формуле
Mx = M0 + Q0Z – 0,5qz2
Изгибающий момент изменяется по квадратичному закону на участке CA и AF (q=const) и по линейному закону – на участках FD и DB (q=0). Вычисляем значения в характерных точках и строим эпюру (рис. 9,в)
MС = –4qa2
MA = MС –
qa2 = – 4qa2 – 0,5 = – 4,5qa2
MF = MA +
qa2 = – 10qa2+ 4qa2 = – 6qa2
MD = MF + 1,125qa2 = – 0,25qa2+ 1,125qa2 = 0,875qa2
MB = MD – 0,875qa2 = 0,875qa2+ 0,875qa2 = 0
Расчетный изгибающий момент равен
Mрас = |MA| = 4,5qa2 = 4,5·15·103·1,22 = 97,2 кН·м
Геометрические характеристики сечения
Положение центра тяжести.
Необходимые вычисления представлены в табл. 4.
Таблица 4 – Положение центра тяжести
| № п/п | υi | Ai | υi Ai |
| 1 | 2t | 8t2 | 16t3 |
| 2 | t | – 3t2 | – 3t3 |
| Σ | 5t2 | 13t3 | |
Момент инерции относительно главной центральной оси.
МПа














