123914 (689707), страница 5
Текст из файла (страница 5)
Из условий работы камеры принимаем ширину рабочего проема Вр.п. = 0,6 м. Высота рабочего проема
Нр.п. = Ни + (400…500); (3.79)
Нр.п. = 1,42 + 0,4 = 1,82 м ≈ 1,85 м.
Ширина транспортного проема для ввода и вывода изделий
Вт.п. = Ви + 2*Вз, (3.80)
где Вз – расстояние между изделием и проемом по ширине, Вз = 0,15…0,2м.
Вт.п. = 1,68 + 2*0,15 = 1,98 м ≈ 2 м.
Высота транспортного проема
Нт.п. = Ни + 2*hз, (3.81)
где hз – расстояние между изделием и проемом по высоте, hз = 0,1…0,2 м.
Нт.п. = 1,42 + 2*0,15 = 1,72 м ≈ 1,75 м.
б) Определение объема удаляемого из камеры воздуха.
Расчетный объем (м3/ч) удаляемого из камеры воздуха для камер с поперечным отводом воздуха определяется по средним скоростям его движения в рабочем и транспортных проемах способа и состава лакокрасочного материала:
V = 3600*υ*F, (3.82)
где υ – скорость воздуха в проемах, м/с;
F – площадь сечения проемов.
Принимаем скорость воздуха в открытых проемах υ = 1,3 м/с.
Площадь сечения открытых проемов при перекрытии их изделием на 30 %
F = 0,95*1,75*2*0,7 + 1,42*1,85 = 5 м2.
V = 3600*1,3*5 = 23400 м3/ч.
По объему удаляемого воздуха выбираем гидрофильтр
Высота гидрофильтра Нг = 2,5 м.
Ширина гидрофильтра Вг = 1 м.
Длина гидрофильтра
Lг = V/(3600*υпр.к.*0,5*Вг*К), (3.83)
где υпр.к. – скорость воздуха в воздухопромывном канале, υпр.к. = 5…6,5 м/с; К – коэффициент живого сечения гидрофильтра (принимаем К = 0,9).
Lг = 23400/(3600*0,5*1*6*0,9) = 2,4 м.
в) Гидравлический расчет.
Общий объем воды, рециркулирующий по экрану и полуцилиндрам гидрофильтра, определим по количеству проходящего через него воздуха из расчета 2,5 л воды на 1 м3 удаляемого воздуха
Vв = 0,0025*V; (3.84)
Vв = 0,0025*23400 = 58,5 м3/ч.
Объем воды, рециркулирующей по экрану гидрофильтра
Vэ = 3600*υв*b*δ, (3.85)
где υв – скорость течения воды по экрану (принимаем υв = 1 м/с);
b – ширина водяной завесы, b = Lг = 2,4 м;
δ – толщина водяной завесы (принимаем δ = 0,003 м).
Vэ = 3600*1*2,4*0,00326 м3/ч.
Объем воды, рециркулирующей по полуцилиндрам
Vпц = Vв – Vэ; (3.86)
Vпц = 58,5 – 26 = 32,5 м3/ч.
При расходе воды 58,5 м3/ч диаметр трубы 3́́ ́
По длине водораспределительной трубы с определенным шагом расположены патрубки диаметром 30–40 мм. Число n патрубков, подающих воду на экран
n = Vэ/(3600*υи*f), (3.87)
где υи – скорость истечения (принимаем υи = 1 м/с);
f – площадь сечения патрубка, м2.
n = 26/(3600*1*0,00113) = 6,4.
Принимаем n = 7. Число патрубков, подающих воду к полуцилиндрам
n = Vпц/(3600* υи*f); (3.88)
n = 32,5/(3600*1*0,00113) = 7,99.
Принимаем n = 8.
Выбираем насос ОХ6–54Г со следующей характеристикой [10, с.14]
Q = 60 м3; η = 0,8.
Выбираем электродвигатель АО–102–6м со следующей характеристикой [10, с.14]
Nн = 125 кВт; n = 1500 мин-1.
г) Выбор вентиляционных устройств.
По объему удаляемого из камеры воздухаподбираем центробежный вентилятор Ц4 – 76 №12,5 со следующей характеристикой [6, с.154]
Q = 25000; Р = 700 Па; η = 0,8; ω = 60 с-1.
Требуемую мощность электродвигателя рассчитываем по формуле (3.17)
N = 25000*700*1,1/(3600*1000*0,8*0,96*0,95) = 7,3 кВт.
Выбираем электродвигатель АО2–61–8 [6, с.173]
N = 7,5 кВт; n = 750 мин-1.
д) Выбор краскораспылительной аппаратуры.
По каталогам в соответствии с необходимой производительностью камеры выбираем краскораспылительную аппаратуру:
– Ручные пневматические краскораспылители типа С–765 – 2 шт., [4, с. 4];
– Очиститель воздуха С–418А – 2 шт., [5 с. 316];
– Шланги для подачи сжатого воздуха и лакокрасочного материала – 10 м.
3.5 Расчет камеры электростатического распыления [1]
а) Выбор распылителей и дозирующих устройств.
Тип устанавливаемых в камере распылителей выбирают с учетом формы окрашиваемого изделия, производительности камеры и вида наносимого материала. Число n распылителей, устанавливаемых в камере, рассчитывают по их производительности и норме расхода краски для изделий соответствующей группы сложности:
n = S0*N/q, (3.89)
где S0 – площадь окрашиваемой поверхности в 1 мин, м2;
N – норма расхода материала, г/м2;
q – производительность одного распылителя г/мин.
Производительность одного распылителя
q = π*dн*qн, (3.90)
где dн – диаметр распыляющего насадка, см;
qн – удельный расход материала на 1 см коронирующей кромки в мин, г*см-1*мин-1.
Для нанесения грунтовки ЭП–0270 при общей производительности камеры 1200 м2/ч выбираем электромеханический распылитель с грибковой коронирующей насадкой (qн = 2 г*см-1*мин-1), dн = 10 см.
q = 3,14*10*2 = 62,8 г/мин.
n = 20*33,3/62,8 = 10,6.
Принимаем n = 12.
Для питания двенадцати распылителей необходимы четыре дозирующие установки типа ДХК.
б) Определение размеров камеры
Ширина камеры
Вк = Ви + 2*В + 2*lр + 2*Вп, (3.91)
где В – расстояние между изделием и коронирующим насадком, В = 0,25…0,3 м;
lр – длина части распылителя, находящейся под высоким напряжением,
lр = 0,2…0,35 м;
Вп – расстояние между стенкой камеры и токоведущими частями распылителя, Вп = 1,0…1,3 м.
Вп = 1,68 + 2*0,3 + 0,3 + 2*1,1 = 4,78 м ≈ 4,8 м.
Длина камеры при установке распылителей по обе стороны от конвейера
Lк = (0,4…0,5)*n + 2; (3.92)
Lк = 0,5*10 + 2 = 7 м.
Высота камеры
Нк = Ни + hп, (3.93)
где hп – расстояние от верха изделия до потолка камеры, hп = 0,8…1,0 м.
Нк = 1,42 + 1,0 = 2,42 м ≈ 2,5 м.
в) Определение размеров проема для ввода и вывода изделий.
Ширина транспортного проема
Впр = Ви + 2*Вз, (3.94)
где Вз – расстояние между изделием и проемом, Вз = 0,15…0,2 м.
Впр = 1,68 + 2*0,2 = 2,08 м ≈ 2,1 м.
Высоту проема Нпр = 2,5 м принимаем равной высоте камеры Нк.
г) Определение объема удаляемого из камеры воздуха и выбор вентиляционных устройств.
Расчетный объем удаляемого из камеры воздуха
V = 3600*υ*F, (3.95)
где υ – скорость воздуха в проемах, υ = 0,4…0,5 м/с;
F – площадь сечения проемов, м2 (принимают с учетом перекрытия их изделием).
При ширине открытого проема Впр = 2,1 м и высоте Нпр = 2,5 м площадь проема составит 2,1*2,5 = 5,25 м2. Площадь проема, перекрываемая изделием, составляет около 30 % площади поперечного сечения изделия: 1,8*1,42*0,3 = 0, 72 м2
Следовательно, площадь, с которой происходит отсос воздуха, составляет 5,25 – 0,72 = 4,53 м2.
Объем отсасываемого воздуха из двух проемов
V = 3600*0,5*2*4,53 = 16308 м3/ч.
Принимаем напор вентилятора Р = 800 Па.
Выбираем вентилятор Ц4–76 №12,5 со следующей характеристикой
Q = 16500 м3/ч; Р = 800 Па; η = 0,7; ω = 60 с-1.
Требуемую мощность электродвигателя рассчитываем по формуле (3.17)
N = 16500*800*1,1/(1000*3600*0,7*0,96*0,95) = 6,32 кВт.
Выбираем электродвигатель типа АО2–61–8 [6, с.173]
N = 7,5 кВт; n = 750 мин-1.
3.6 Расчет конвективной сушильной установки для сушки второго слоя грунта [7]
а) Определение размеров сушильной камеры.
Ширина транспортного проема определяется по формуле (3.31)
b1 = 1,68 + 2*0,15 = 1,98 м ≈ 2 м.
Высота транспортного проема определяется по формуле (3.32)
h1 = 1,42 + 2*0,1 = 1,62 м ≈ 1,7 м.
Ширина камеры (с учетом размещения воздуховодов) определяется по формуле (3.33)
В = 1,68 + 2*0,7 = 3,08 м ≈ 3,1 м.
Длина камеры определяется по формуле (3.34)
L = 1,2*20 +2*1,5 = 27 м.
Высота камеры определяется по формуле (3.35)
Н = 1,42 + 0,8 + 1,32 = 3,54 м ≈ 3,6м.
Размеры проема в месте прохождения конвейера с учетом размеров каретки bз = 0,3 м; hз = 0,4 м.
Площадь транспортного проема определяется по формуле (3.36)
Fпр = 2*1,7 + (2 + 0,3)/2*(1,32 – 0,1 – 0,4) + 0,3*0,4 = 4,7 м2.
Поверхность стен сушильной камеры определяется по формуле (3.37)
F1 = 2*(27 +3,1)*3,6 – 2*4,7 = 207 м2.
Поверхность потолка и пола сушильной камеры определяется по формуле (3.38)
F2 = 2*27*3,1 = 167 м2.
Поверхность наружных воздуховодов определяется по формуле (3.39)
F3 = 2*27 = 54 м2.
б) Расход теплоты в сушильной камере.
Тепловые потери через внешние ограждения камеры определяется по формуле (3.40)
В качестве теплоизоляции выбираем минеральную вату (слой толщиной 0,08 м). Тогда коэффициенты теплопередачи [1, с. 217], кДж/(м2*ч*°С)
k1 = k2 = 3,73; k3 = 7,54.
W1 = (207*3,73 + 167*3,73 + 54*7,54)*(150 – 15) = 243292 кДж/ч.
Расход тепла на нагрев изделий и транспорта определяется по формуле (3.41)
Значения t2изд и t2тр рассчитываем по формуле (3.42)
Учитывая, что Sизд = 0,0014 м; Sтр = 0,005 м, тогда
0,33 = 0,0014*7800*0,48/(1*29,3)*2,3*lg[(150 – 15)/(150 – t2изд)];
0,33 = 0,005*7800*0,48/(1*2,93)*2,3*lg[(150 – 15)/(150 – t2тр)].
Решая эти уравнения, получим
t2изд = 129 °C и t2тр = 70°С.
W2 = 18000*0,48*(129 – 15) + 3800*0,48*(70 – 15) = 1085280 кДж/ч.
Расход теплоты на нагрев и испарение растворителя с изделий определяется по формуле (3.43)
Массу растворителя, поступающую с изделиями в камеру, определяем по формуле (3.44)
Gв = 0,1*4800 = 480 кг/ч.
W3 = 480*[4,19*(150 – 15) + 350] = 1421462 кДж/ч.
Расход теплоты на нагрев свежего воздуха определяется по формуле (3.45)
Масса воздуха, врывающегося через открытые проемы Gвоз, при наличии воздушных завес, если принято, что Gзав/Gвоз = 1 (где Gвоз = Gзав – масса воздуха подаваемого на воздушную завесу) рассчитывается по формуле (3.46) [1, с. 235]
Коэффициент μ зависит от типа завесы (односторонняя или двухсторонняя), а так же от соотношения Gзав/Gвоз и Fщ/Fпр (где Fщ – площадь щели завесы, через которую выходит воздух, м2) и угла выхода струи завесы к плоскости проема.
Для расчета принимаем: размеры щели воздушной завесы 2,42 x 0,015 м (завесу устанавливаем по всей высоте проема с двух сторон); угол выхода струи завесы к плоскости проема α = 45°; температура смеси в проеме 75 °С. Тогда плотность воздуха будет равна, кг/м3 ρн = 1,226; ρвн = 0,946; ρсм = 1,013 [2, с.10]. Отношение Fщ/Fпр определяем по формуле (3.47)
Приведенную ширину проема определяем по формуле (3.48)
Суммарную высоту проема определяем по формуле (3.49)
hпр = 1,32 + 2,42 + 0,1 = 3,84 м.
b́́ ́ = 4,7/3,84 = 1,22 м.
Fщ/Fпр = 2*0,015/1,22 = 1/40,6.
Расстояние от нейтральной линии до низа проема определяем по формуле (3.50)
hнл = 4,7/2*2 = 1,8 м.
С учетом вышеуказанных условий получаем μ = 0,160 [4, с.40].
Gвоз = Gзав = 2/3*3600*0,160*2*1,18*(2*9,81*1,18*(1,226 – 0,946)*1,013)0,5 = 2322 кг/ч.
Расход воздуха через два проема
Ǵвоз = 2*Gвоз = 2*2322 = 4644 кг/ч.
Объемный расход воздуха через два проема определяем по формуле (3.51)
Vвоз = 4644/1,226 = 3788 м3/ч.
W4 = 4644*1,0*(150 – 15) = 626940 кДж/ч.
Общий расход теплоты определяем по формуле (3.52)
∑W = (243292 + 1085280 + 1421462 + 626940)*1,2 = 4052369 кДж/ч.
в) Расчет горения топлива.
Теоретический объем продуктов сгорания при сжигании 1 м3 газа определяем по формуле (3.53)
Vог = 1,14*35200/(4,19*1000) + 0,25 = 9,83 м3/м3.
Теоретический объем воздуха, необходимый для сжигания 1 м3 газа определяем по формуле (3.54)
Vов = 1,09*35200/(4,19*1000) – 0,25 = 8,9 м3/м3.
Действительный объем воздуха, подаваемый для сжигания 1 м3 газа, определяем по формуле (3.55)
Vв = 1,15*8,9 = 10,2 м3/м3.
Действительный объем продуктов сгорания определяем по формуле (3.56)
Vг = 9,83 + (1,15 – 1)*8,9 = 11,17 м3/м3.
Удельная энтальпия продуктов сгорания определяем по формуле (3.57)