123786 (689613), страница 5
Текст из файла (страница 5)
2) по рис. 10.1 глубина резания мм и ширина обработки
мм;
3) согласно [1, стр. 284, табл. 35] принимаем подачу ;
4) скорость резания рассчитываем по формуле
,
где - стойкость инструмента,
мин [1, стр. 290, табл. 40];
- число зубьев фрезы,
;
[1, стр. 287, табл. 39];
где – коэффициент, характеризующий группу стали по обрабатываемости,
=0,85,
=1,45 [1, с. 262, табл.2];
– коэффициент, учитывающий состояние поверхности,[1, с. 263, табл.5];
– коэффициент, учитывающий влияние материала инструмента, [1, с. 263, табл.6];
По рассчитанной скорости резания определяем требуемую частоту вращения фрезы при обработке данной поверхности:
об/мин.
11. Определение усилий и мощности резания
Определяем главную составляющую силы резания:
Согласно [1] выбираем значения степеней и коэффициентов:
Тогда усилие резания
Н.
Определяем мощность резания:
Учитывая коэффициенты при затуплении – 1,7 и при неравномерности припуска – 1,4, получим мощность станка:
12. Расчет клиноременной передачи.
Исходные данные:
P1=2,43 кВт, n=1440об/мин, i=2.
В зависимости от n выбираем сечение ремня А.
Принимаю dшк=150 мм,P0≈3 кВт.
Пусть а≈450мм. Тогда lp=2·450+0.5·р·(150+300)=2042 мм. Принимаю lp=2100 мм.
Уточняем межосевое
.
Ср=1,3, Сi=1,14, Cl=0,95, Cб=0,89.
Pp=P0СiClCб/ Ср=3·1,14·0,95·0,89/1,3=2,22 кВт.
6) Число ремней z=3/2,22/0,95≈3 ремня.
Находим предварительное натяжение одного ремня при
v=р·dшкn/60=3,14·0,2·1440/60=15,072м/с и Fv=1250·81·10-6·15,07=23H
равно
F0=0.85·P·Cp·Cl/(zvCбCi)+Fv=0.85·3·1.3·0.95/(3·13.08·0,890,95)+23=91,6H
Сила, действующая на вал
F=2·F0·z·cosβ/2=2·96,4·3·cos12,6=537H.
Ресурс наработки
Т=ТсрК1К2=2000·2,5·1=5000ч.
13. Расчет прогиба шпинделя
Для расчета будем использовать программу автоматического расчета прогиба шпнделя. Исходными данными расчета являются:
- номер расчетной схемы (5);
- составляюшие усилий резания:
Pz=200H;
Py=1157H;
Po=2313H;
- диаметр конца шпинделя Dm=90мм;
- диаметр отверстия в шпинделе Dot=30мм;
- диаметр шпинделя между опорами Dk=70мм;
- угол между усилием резания и окружным усилием Gm=0-6,28 Рад.
Выходными данными программы являются:
- FR1, FR2 – реакции в передней и задней опорах, Н;
- У – прогиб рабочего конца шпинделя, мкм;
- θ – угол поворота шпинделя в передней опоре, Рад.
После расчета программа выдала следующие значения:
Минимальный прогиб и угол поворота будет при угле:
Gm =3,14рад;
FR1=4423Н;
FR2=-5793Н;
У=335мкм;
θ=-0,000003Рад.
14. Расчёт жёсткости опор качения
Жёсткость опоры:
;
где - упругое сближение тел качения и колец подшипника, мм;
- контактные деформации на посадочных поверхностях подшипника, шпинделя и корпуса, мм.
Для расчета подшипника на передней опоре, а именно духрядного роликоподшипника типа 3182118 вначале определяют податливость подшипника по графику (МУ№125 рис. 3.2) - .
Коэффициент податливости определяют по графику (МУ№125 рис. 3.3) -
, С=60мм, l=3·C=180мм.
Относительный зазор-натяг = 0.
- податливость подшипника;
Податливость посадочных поверхностей:
Суммарная жесткость на ПО:
Для ЗО или дуплекса (пары) радиально-упорных шарикоподшипников жесткость определяется в такой последовательности:
По (МУ№125 рис. 3.4) -
по (МУ№125 рис. 3.5);
где =10мм – диаметр шариков шарикового радиально-упорного подшипника 36214;
КR - вспомогательный коэффициент податливости.
Податливость посадочных поверхностей:
где k=0,01 – коэффициент податливости;
d – диаметр внутреннего кольца подшипника, d=70 мм;
D - диаметр наружного кольца подшипника D=125 мм;
В – ширина подшипника, В=44 мм.
Окончательная жесткость для ЗО:
Анализируя полученные данные, делаем вывод, что хотя подшипники передней опоры более жёсткие по сравнению с подшипниками задней опоры, прогибы в передней опоре всё равно на порядок выше из-за больших сил, возникающих на торце шпинделя при фрезеровании.
15. Расчёт жёсткости шпинделя
Радиальное перемещение переднего конца шпинделя:
;
где - перемещение, вызванное изгибом тела шпинделя;
- перемещение, вызванное податливостью (нежёсткостью опор);
- перемещение, вызванное сдвигом от действия поперечных сил.
Рисунок 15.1 – Перемещения переднего конца шпинделя
Применим известные формулы сопромата и пренебрегая величиной , которая для реальных размеров шпинделей, имеющих центральное отверстие, не превышает 3-6 процентов, запишем:
где Е – модуль упругости материала шпинделя, Е=2· Па;
- осевые моменты инерции сечения шпинделя соответственно на консольной части и между опорами;
и
- соответственно податливость передней и задней опор шпинделя;
- коэффициент, учитывающий наличие в передней опоре защемляющего момента,
=0,1….0,2. Принимаем
=0,5;
а – длина вылета (консольной части) шпинделя, а=60 мм;
l – расстояние между опорами шпинделя, используя программу принимаем оптимальное l=250 мм;
F=Pу=1291,5 Н.
Определим суммарный угол поворота от статической и динамической нагрузки:
.
Таким образом при диаметре фрезы 22мм и глубине шпоночного паза 9мм, данный ШУ может применятся на данном фрезерном станке при обработке шпоночного паза, исходя из допуска на глубину шпоночного паза , углубление (увод) оси фрезы при фрезеровании не должен превышать
, в данном случае углубление составит:
, что меньше допустимого значения.
16. Динамический расчет шпиндельного узла
Для получения частотных характеристик шпиндельного узла разобьем его на участки и рассчитаем их осевые моменты инерции и массу:
Рисунок 16.1 – Чертеж шпиндельного узла
Рисунок 16.2 – Разбиение шпиндельного узла на участки
Используя пакет КОМПАС-3D V8 и 3D модель данного узла рассчитаем необходимые параметры:
Жесткость Cr и коэффициент демпфирования h опор (согласно пункту 15):
Cr1=635000 Н/мм
Cr2=508000 Н/мм
где – относительное рассеивание энергии на шариковой радиально-упорной сдвоенной опоре;
– относительное рассеивание энергии на роликовой радиально сдвоенной опоре; а=60 мм – вылет; l=250 мм – межопорное расстояние h1,2=0,11
Полученные данные заносим в программу и на основании нижеперечисленных формул получаем графики частотных характеристики узла. Передаточная функция УС шпинделя
Рисунок 16.3 – Графики амплитудно-частотных характеристик
Таким образом собственная частота 90 с-1, что входит в интервал 63-117рад/с рабочей частоты шпиндельного узла, поэтому использовать эту частоту вращения шпинделя и близкие к ней не рекомендуется. Для этого следует увеличить рабочую частоту привода.
Заключение
В курсовой проекте исследован технологический процесс обработки детали в неавтоматизированном производстве, произведен синтез и анализ двух компоновок автоматических линий, выбран наиболее рациональный вариант автоматической линии по критерию обеспечения заданной производительности и минимума приведенных затрат, разработана циклограмма работы выбранного варианта автоматической линии.
Также была спроектирована станочная система на базе шпоночно-фрезерного станка. Спроектирован шпиндельный узел данного станка. Произведен динамический расчет шпиндельного узла, режимов и мощности резания, в условиях фрезерования данного шпоночного паза.
Список литературы
-
Справочник технолога машиностроителя. В 2-х т. Т2/ Под. ред. А.Г. Косиловой и Р.К. Мещерякова 4-е изд-. М.: Машиностроение, 1985.-496с.
-
Методические указания по выполнению курсовых работ по дисциплине «Теория проектирования автоматизированных станочных комплексов» №774.Сост.:Л.П. Калафатова, А. Д. Молчанов Донецк ДонНТУ 2003. 47с.
-
Шаумян Г.А. Комплексная автоматизация производственных поцессов.-М.: Машиностроение, 1987. -288с.
-
Анурьев В.И. Справочник конструктора-машиностроителя В 3-х т. Т1./ Под. Ред. И.Н. Жестковой: М. Машиностроение 2001.-920с.