177758 (685613), страница 27
Текст из файла (страница 27)
Следовательно, наука и другие отрасли интеллектуальной деятельности тесно взаимосвязаны, и в процессе их координации обеспечивается гармоничное развитие человеческой личности, способной успешно решать различные задачи во всех сферах человеческой деятельности.
Развитие науки как процесс накопления знаний уходит своими корнями в глубокую древность. Начальные знания о законах объективного мира были получены еще в рабовладельческих государствах: Греции, Риме, Египте и др. Как правило, эти знания приобретшись в процессе практической деятельности людей в сфере материального производства, носили прикладное значение.
Современная наука начала формироваться под влиянием потребностей развивающегося производства. В развитии современной науки все более ощутимую роль начинает играть эксперимент, который становится одним из ведущих методов научных исследований. В общественном сознании наука становится важнейшей ценностью, областью интеллектуальной деятельности, развитие которой определяет перспективы всего общественного развития, эволюцию общественного сознания.
Авангардная роль науки в развитии человеческого общества определила ее место в системе общественных приоритетов: в современных условиях все страны мира считают развитие науки важнейшей стратегической задачей общегосударственного значения.
В связи с этим стратегические задачи государственной политики в области науки должны быть нацелены на:
— укрепление и развитие научно-технического потенциала государства и, в первую очередь, в приоритетных (прорывных) ее направлениях;
— создание условий для возникновения и эффективного функционирования рыночной среды, тех рыночных регуляторов, которые определяли бы спрос и предложение на рынке научно-технической продукции;
— интеграцию отечественной науки в мировое сообщество, увеличение объема и улучшение обмена информацией и технологиями;
— согласованное развитие науки и образования, создание целостной системы подготовки высококвалифицированных научных кадров всех уровней и по всем направлениям научной деятельности;
— разработку и внедрение в сферу науки эффективно действующего мотивационного механизма, использовав для этих целей финансовые средства государственного, общественного и частного секторов экономики.
Реализация указанных задач в долгосрочной перспективе будет способствовать эффективному развитию научной деятельности в академическом, вузовском и отраслевом секторах науки.
Наука как специфическая сфера интеллектуальной деятельности характеризуется рядом классификационных признаков (принципов) по направлениям или группам научных дисциплин.
В зависимости от предмета научного познания и методов исследования наука подразделяется на три группы или подсистемы: естественные, общественные и технические науки. Границы между этими подсистемами в определенной мере условны — некоторые отрасли научных знаний находятся на стыке этих наук: бионика, техническая эстетика, экономическая география и т. д. Наряду с продолжающимся процессом дифференциации научных знаний и выделением новых научных дисциплин проходит процесс междисциплинарных комплексных исследований, охватывающий целые комплексы различных научных дисциплин, находящихся в определенных взаимосвязях и взаимозависимостях. Примером тому могут служить исследования в области экологии и охраны окружающей среды, затрагивающие различные области научных знаний, включая биологию, комплекс наук о земле, технические науки, медицину, экономику, математику, юриспруденцию, международные отношения и т. д.
По отношению к непосредственной человеческой деятельности наука подразделяется на фундаментальную и прикладную. Фундаментальная наука исследует общие законы развития природы, общества, человеческого мышления. Прикладная наука стремится к практическому использованию результатов фундаментальных научных открытий для решения конкретных практических задач, возникающих в процессе развития общества. Если фундаментальная наука занимается разработкой проблем, имеющих в основном познавательное значение, то прикладная наука занимается преимущественно решением практических проблем, таких, как внедрение наукоемких высоких технологий, конкурентоспособных на мировом уровне. Разумеется, грани между фундаментальной и прикладной науками в определенной мере условны: в процессе выполнения исследований в области фундаментальной науки могут быть получены результаты, имеющие исключительно важное прикладное значение; в свою очередь, прикладные исследования могут завершиться научными открытиями, имеющими фундаментальное теоретическое значение. Но такие случаи являются исключением из правила и не отрицают важности и необходимости разграничения фундаментальных и прикладных наук.
Фундаментальная наука развивается с определенным опережением по сравнению с прикладной наукой, создавая для последней определенные «теоретические заделы». Между фундаментальными и прикладными науками должно быть определенное соответствие, при котором достигалось бы опережающее развитие фундаментальных исследований и вместе с тем обеспечивалось прикладное использование их результатов.
В соответствии с указанным делением наук на фундаментальные и прикладные любое научное исследование может оцениваться с точки зрения его научного, теоретического уровня и прикладной, практической значимости. Теоретический уровень научных исследований характеризуется вкладом в разработку законов и закономерностей исследуемых процессов, в методологию научного познания, в разработку проблем теории организации и управления. Прикладной уровень научных исследований определяется глубиной и проработанностью предлагаемых технических и технологических решений, степенью разработанности экономических, правовых и иных механизмов деятельности, конкретностью рекомендаций, которые могут быть непосредственно или после некоторой их доработки использованы в практической деятельности людей. В процессе поступательного развития науки происходит ее дифференциация, т. е. обособление отдельных отраслей знаний в отдельные науки, одновременно с этим происходит интеграция наук — их взаимопроникновение и дополнение. Оба эти процесса проходят параллельно, дополняя друг друга, являясь отражением общего процесса разделения труда, результатом которого является ускорение развития науки, приумножение ее роли в развитии общества. По своей природе процесс развития науки бесконечен, в силу чего невозможно в обозримой перспективе конкретно определить все его формы и взаимосвязи.
Наука в системе государственных приоритетов
Наука является производительной силой общества, активно влияет на развитие мирохозяйственных связей и эффективность общественного производства. Именно поэтому она занимает в системе государственных приоритетов особое место. Система государственных приоритетов ориентирована на укрепление обороноспособности страны, обеспечение суверенитета государства, экономической и технологической безопасности, продовольственной, энергетической и сырьевой независимости, а также внешнеэкономической и финансовой самостоятельности.
Наука занимает исключительно важное место в обеспечении экономической и технологической безопасности страны. Для выполнения этой роли в бывшем СССР были созданы крупнейшие государственные научно-исследовательские институты в сфере фундаментальных и прикладных наук с целью разработки проектов в приоритетных направлениях, особенно в области генной инженерии, управляемого термоядерного синтеза, создания новых средств транспорта и связи, мембранной, лазерной, плазменной и других технологий, развития авиакосмонавтики и все более широкого использования космоса в интересах производства и охраны окружающей среды и т. д.
В современных условиях без активного участия ученых и широкого внедрения достижений науки невозможно успешно решать проблемы обеспечения экологической безопасности общества. С помощью науки разрабатываются и реализуются экологически чистые технологии в промышленности и других отраслях хозяйства страны. Наука предлагает практике наиболее эффективные и экономичные способы добычи и глубокой переработки полезных ископаемых, применение ресурсосберегающих энергетических установок, новых материалов и химических веществ, что позволяет улучшать среду обитания человека, делать ее более безопасной для жизни людей.
Улучшая экологические условия жизнедеятельности людей, наука способствует сохранению их здоровья, и тем самым — демографической ситуации в стране.
На базе научных исследований создаются наукоемкие производства, которые приносят экономически развитым странам самые высокие доходы в процессе продажи наукоемкой продукции на внешнем рынке, так как в настоящее время соотношение цен на сырье, материалы и энергоносители, с одной стороны, и на продукцию высокой степени переработки — с другой, изменяется в пользу последних.
Под наукоемкой продукцией понимается новая и сложная техническая (технологическая) система определенного класса изделий, созданная высококвалифицированным персоналом на базе научных разработок, часто с использованием патентов на изобретения. Наукоемкая продукция по своим технико-экономическим параметрам соответствует уровню мировых стандартов или его превышает, особенно по таким показателям, как производительность труда, экономичность в расходовании ресурсов, экологическая чистота окружающей среды.
Высокая экономическая эффективность продажи наукоемкой продукции на внутреннем и внешнем рынках ставит в исключительно благоприятные финансовые условия страны, специализирующиеся на производстве и экспорте наукоемкой продукции, включая информационную технологию, производство компьютеров, средств множительной техники, авиастроение, ракетостроение, атомные технологии, полимерную химию. Учитывая эти преимущества, сегодня электроника, авиационная техника, эффективные синтетические материалы, лекарственные препараты и другая наукоемкая продукция стали занимать лидирующее положение в промышленности таких стран, как США, Япония, ФРГ и других индустриально развитых стран. Объем мирового рынка наукоемкой продукции в настоящее время составляет 2 трлн. 300 млрд. долл. США. Из этой суммы 39% — это продукция США, 30 — Японии, 16 — Германии.
Доля России — 0,3%, поскольку российская экономика специализируется в основном на экспорте сырья и энергоносителей. Между тем (как показывает опыт восстановления экономики ФРГ и Японии в послевоенный период), наиболее эффективным для России способом преодоления кризиса экономики и внешней задолженности могло бы стать форсированное развитие науки, наукоемких производств и расширение экспорта наукоемкой продукции, прежде всего тех отраслей, в которых Россия по-прежнему занимает лидирующее положение.
Анализ мирового рынка показывает: производство наукоемкой продукции обеспечивает всего порядка 50 макротехнологий. Семь наиболее промышленно развитых стран (США, Великобритания, Германия, Франция, Италия, Канада и Япония), обладая 46 макротехнологиями, контролируют в настоящее время около 80% этого рынка.
В результате США ежегодно получают от экспорта наукоемкой продукции около 700, Германия — 530, Япония — 400 млрд. долл. США.
Российская наука и экономика вполне способны освоить не менее 12 макротехнологий из 50 приоритетных, что определяет потенциал развитых стран. Это авиационные и космические технологии; новые «мыслящие материалы»: керамика, металлы, полимеры, композиты, которые способны реагировать на внешнюю среду и подстраиваться под изменения. В области информатизации может быть осуществлен выпуск принципиально нового носителя информации — трехмерной оптико-электронной памяти, а также технологии создания элементной базы электроники, механотроники, компьютеров 5-6-го поколений; могут развиваться лазерные технологии; голография; длинноволновые каналы связи; системы глобального мониторинга окружающей среды и ряд других направлений.
Например, разрабатываемые в настоящее время в России нейрокомпьютеры (НКП) в перспективе могут коренным образом реформировать информационную сферу. Эти вычислительные машины по устройству наиболее близки к человеческому мозгу. При относительно небольших размерах и стоимости НКП почти в тысячу раз превосходят современные компьютеры по скорости операций.
Российская наука по-прежнему может предложить ряд уникальных проектов, например, в области энергетики. Это ядерные энергетические установки с предельно высокой степенью безопасности (подземные, жидкометаллические, модульные, космические, газовые); энергетические установки с комбинированными нетрадиционными энергоносителями (геотермальные, биотехнологические); установки с использованием энергоаккумулирующих веществ, жидких и газообразных водородных средств; в области добычи и глубокой переработки полезных ископаемых — технологию интенсификации нефтедобычи и отдачи путем применения вибрационных процессов; технологию слабой динамичности при добыче алмазов (локальные тепловые процессы, дефлагационные процессы горения и взрыва); мембранные технологии разделения химических веществ; высокотемпературный и сверхвысококачественный синтез энергоносителей; в области биотехнологий — методы управления наследственностью, способы управляемой очистки опасных технологических процессов; создание экологически чистых лекарственных препаратов.
Однако для успешного решения указанных и ряда других задач требуется новая научно-техническая политика государства, направленная на подъем российской науки и системы образования, включая подготовку научных кадров. Эти процессы должны стать объектом государственного регулирования, особенно фундаментальные исследования, так как они носят долгосрочный характер, требуют больших единовременных затрат и соответствующей организации.
В промышленно развитых странах государственный бюджет несет основные затраты по финансированию фундаментальной науки. Например, в США на развитие фундаментальной науки расходуется до 9 млрд. долл. в год.
Механизмом реализации научно-технической политики, приоритетных направлений развития науки, техники и технологий федерального уровня должны стать федеральные целевые научные и научно-технические программы.















