166515 (685459), страница 4

Файл №685459 166515 (Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии) 4 страница166515 (685459) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

В работе [24] исследована возможность инверсионно-вольтамперомет-рического определения ртути в воздухе. Предложен состав раствора, экспериментальная установка, позволяющие проводить экстракцию ртути из воздуха и ее последующее инверсионно-вольтамперометрическое определение в растворе того же состава. Исследования проводились на золотом электроде. Найдено, что оптимальным составом раствора, позволяющим полностью улавливать ртуть из воздуха в диапазоне концентраций 0-100 мкг/м3 является: 1М HClO4 + 0,1M HCl + 10-6M I2. Установлена линейная зависимость аналитического сигнала от времени продувки и скорости паров ртути через электрохимическую ячейку, получена зависимость содержания ртути в ячейке от температуры прокачиваемого воздуха. На примере диметилртути показана принципиальная возможность определения органических соединений ртути в растворе того же состава. Предложен способ градуировки измерительной установки с использованием паров диметилртути.

Поскольку водные растворы йода неустойчивы на воздухе, то йод предложено вводить в раствор двумя способами. Первый способ - в виде спиртового раствора непосредственно перед измерениями, второй - электрохимическим генерированием йода из раствора калий йода. [24]

Томские ученые в тезисах [25] отмечают, что для определение ртути в последние годы широко применяется метод инверсионной вольтамперометрии (ИВА), отличающийся низкими пределами обнаружения и простотой применяемой аппаратуры. В работе оптимизированы условия получения сигнала ртути (0,0002-0,05 мг/л) методом ИВА в присутствии мешающих компонентов, таких как медь и железо, на тонкопленочном золотом электроде (in situ): фон – 0,1 М HNO3 c добавкой 410-6 M ионов Au (3+) и 0,005 М Cl-, Еэ = 0,2 В. Предложена пробоподготовка пищевых продуктов, сочетающая химическое окисление матрицы смесью концентрированных HNO3 и H2O2 с последующей обработкой раствора УФ-светом. Условия выбраны методом дробного факторного планирования эксперимента. Показано, что наиболее значимыми являются объем перекиси водорода и время химической минерализации. Для ряда матриц (молочные продукты, овощи) достаточна одна химическая стадия, при условии, что остаточная концентрация перекиси водорода в пробе менее 0,06%. Показано, что применение персульфата калия вместо перекиси водорода не эффективно в условиях пробоподготовки (удлиняется время и полнота фотоокисления). Для разложения проб зерновых и бобовых культур предложено вместо азотной кислоты использовать разбавленную 1:1 серную, иначе происходят большие потери ртути на стадии химической минерализации.

Показано [25], что эксимерная XeBr-лампа является альтернативой ртутным кварцевым лампам для разрушения органических веществ в процессе пробоподготовки различных образцов. Разработана методика определения ртути в пищевых продуктах (напитки, овощи, фрукты, молоко, творог, фасоль и др.) отличающаяся упрощенной пробоподготовкой. Она требует минимума операций, материалов, реактивов и посуды, что приводит к уменьшению величины холостого опыта.

Авторами [26] определение марганца в белых и красных винах проводили методом инверсионной вольтамперометрии с помощью вольтамперометрического анализатора “ИВА-5” (НПВП “ИВА”, г. Екатеринбург). Использовали трехэлектродную ячейку. В качестве рабочего электрода применяли толстопленочный графитсодержащий электрод (НПВП “ИВА”, г. Екатеринбург). Вспомогательным электродом служил стеклоуглеродный стержень; электродом сравнения – хлоридсеребряный электрод. Фоновым раствором служил аммиачно-хлоридный буферный раствор (рН 9,2 ± 0,2). рН раствора контролировали с помощью рН-метра-милливольтметра типа рН-150. Подготовку проб вина осуществляли на установке Digesdahl Digestion Apparatus Model 23130-20,21 (Hach Company, USA) путем мокрого его озоления с помощью концентрированной серной кислоты и пероксида водорода.

В работе выбраны оптимальные условия определения марганца в винах. Установлено, что сухие белые вина можно анализировать без предварительного разложения, а для красных вин необходима пробоподготовка. В результате анализа вин установлено, что содержание марганца в сухих винах составляет 0,5 – 1,9 мг/л, причем в красных винах содержание марганца меньше, чем в белых. Правильность полученных результатов проверялась методом «введено-найдено».

Современные пути развития метода инверсионной вольтамперометрии направлены на автоматизацию процесса анализа, решение проблемы пробоподготовки и создание экологически безопасных индикаторных электродов (сенсоров), позволяющих заменить классический ртутный или ртутно-пленочный сенсор, не ограничивая возможности метода. Новые типы электрохимических сенсоров (толстопленочных электродов) изготовлены на основе углеродных композиционных материалов по screen-printed – технологии в двух вариантах: в виде отдельных стрип-электродов и долгоживущих гибких электродов с заменяемой поверхностью. Электрохимическая регенерация их поверхности осуществляется в процессе измерений в автоматическом режиме. [27]

Толстопленочные углеродсодержащие электроды, химически модифицированные различными соединениями предварительно и in situ используются для определения Cd, Pb, Cu, Zn, Sn, Hg, As, Ni, Co, Cr, Fe, Se, Mn, Mo методом инверсионной вольтамперометрии.

Как указывают авторы [27], новые сенсоры экологически безопасны, высокочувствительны, селективны, обеспечивают высокие метрологические характеристики результатов анализа и могут использоваться с лабораторными анализаторами (ИВА-5) или проточными автоматизированными системами (ИВА-7). Программное обеспечение вольтамперометрических ПК-совместимых анализаторов ИВА-5 и ИВА-7 управляет автоматически работой всех подсистем (измерениями, электрохимической пробоподготовкой; контрольно-исполнительными устройствами), обрабатывает результаты измерений, накапливает и сохраняет результаты измерений. Предложенный комплексный подход к созданию вольтамперометрических приборов, программ, сенсоров для решения проблем вольтамперометрического мониторинга окружающей среды позволяет обеспечить экспрессный аналитический контроль содержания токсичных элементов как в стационарных и передвижных лабораториях, так и в автоматических проточных системах.

В связи с очень высокой токсичностью соединений мышьяка, его содержание в объектах окружающей среды подлежит обязательному контролю. ПДК мышьяка в воде и напитках находится в пределах от 0,05 до 0,2 мг/кг, что требует применения достаточно чувствительных методов определения. Распространенной является методика фотометрического определения мышьяка в воде, основным недостатком которой является сложная предварительная подготовка пробы к анализу. При определении As(3+) в водах и биологических объектах успешно применяются полярографические методы. Для определения мышьяка предлагается как анодная, так и катодная вольтамперометрия с использованием различных электродов (ртутно-пленочных, графитовых и стеклоуглеродных), различных фоновых электролитов и вторых элементов. Для повышения чувствительности определения мышьяка методом инверсионной вольамперометрии его обычно концентрируют на золотых и золото-графитовых электродах [28]. Работа посвящена разработке методики анализа воды на содержание мышьяка методом инверсионной вольтамперометрии с использованием золото-стеклоуглеродного электрода(ЗСУЭ), полученного методом «in situ»,что удешевляет анализ. Определены условия инверсионно-вольтамперометрического анализа мышьяка с использованием ЗСУЭ: фоновый электролит - Трилон Б (0,02 моль/дм3), время электролиза 120 сек, потенциал электролиза = -1,0 В. Диапазон определяемых концентраций 0,006-0,05 мг/дм3.Методом «введено – найдено» оценены возможности предлагаемой методики. Отклонение от истинного, оцененного по t-критерию, не значимо. Воспроизводимость результатов в изучаемой области концентраций не ниже 90%. Рассчитан предел обнаружения 0,006 мг/дм3.

Авторами [28] проведен анализ проб речной воды на содержание мышьяка методом инверсионной вольтамперометрии с использование ЗСУЭ. Сравнение полученных результатов с данными фотометрического анализа по t-критерию свидетельствует о хорошем совпадении результатов. Разработанная методика экспресснее фотометрической, т.к. не требует предварительного концентрирования, и превосходит ее по чувствительности.

Анализ нефтепродуктов на содержание меди, свинца, висмута на уровне 10-8 – 10-7%, проводили в условиях эффекта амальгамы аммония (ЭАА) при повышенной температуре. Сущность ЭАА заключается в следующем. В процессе электролиза раствора соли аммония (при определенных условиях) ионы аммония восстанавливаются на ртутном капельном электроде, и продукт реакции, аммиак, диффундирует в объем электрода. По мере его накопления в электроде объем последнего значительно увеличивается, возрастает при прочих равных условиях и ток электролиза. ИВА-определение проводили в 0,5 М растворе NH4Cl (индифферентный электролит) при температуре 50оС. Предварительное озоление пробы нефтепродукта массой 1-2 г проводили в калориметрической бомбе в атмосфере кислорода. [29]

Безусловно, большой интерес представляет способ количественного определения микроэлементов в нефтях без озоления пробы. Исключение этой стадии позволяет сократить общую продолжительность анализа и улучшить воспроизводимость его результатов. При этом навеску пробы массой 1,5-2 г предварительно обрабатывали при энергичном перемешивании 10 мл смеси конц. серной кислоты ( =1,84 г/см3) и пероксида водорода в соотношении 1:1 при температуре 60оС.

Изучены условия использования комплексов кадмия с ЭДТА и НТА для косвенного инверсионно-вольтамперометрического определения кобальта и никеля в нефтях и нефтепродуктах. Косвенно определяемый элемент М1 (Со, Ni) вытесняет из внутрикомплексного соединения элемент М2 (Сd), сравнительно легко определяемый методом ИВА. Поскольку раздельное определение никеля и кобальта при соизмеримых концентрациях в растворе затруднено, предложены условия предварительного ионообменного разделения этих элементов на сильноосновном анионите из растворов хлороводородной кислоты. [29]

Как показано в тезисах [30], для определения содержания иода в водах использовали метод катодной инверсионной вольтамперометрии и ртутно-пленочные электроды (РПЭ) в качестве индикаторных. Для дезактивации мешающего влияния органических веществ и растворенного кислорода пробу подвергали ультрафиолетовому облучению на фоне муравьиной кислоты. При этом происходит одновременное восстановление иодат-ионов и органических форм иода до иодид-ионов. Данная методика имеет много общих черт с методикой определения концентрации цинка, кадмия, свинца и меди в воде методом анодной инверсионной вольтамперометрии на РПЭ с фотохимической подготовкой проб. Это позволило совместить определение тяжелых металлов и йода в водах. Для этого проводили накопление цинка, кадмия, свинца, меди и регистрировали анодную вольтамперограмму, после чего делали остановку потенциала для накопления иодид-ионов и регистрировали катодную вольтамперограмму. Концентрацию элементов в пробе определяли методом добавок. Прецизионность результатов анализа, полученных при совместном и раздельном определении тяжелых металлов и йода, не превышает 20 %. Равноценной заменой ртутно-пленочному электроду оказались электроды, модифицированные твердым раствором ртути в серебре. Модифицирование проводили путем последовательного электрохимического нанесения ртути и серебра на рабочую поверхность электрода. В качестве подложки использовали серебро и различные виды углеродсодержащих электродов. Выбраны оптимальные условия модифицирования и проведения измерений, позволяющие получать аналитические сигналы цинка, кадмия, свинца, меди и йода, по своим параметрам не уступающие сигналам, полученным на РПЭ. Количество удовлетворительных результатов анализа, получаемых с использованием одного серебряного модифицированного электрода без регенерации поверхности – не менее ста, тогда как поверхность модифицированного углеродсодержащего электрода необходимо обновлять после анализа не более десяти проб.

Среди микроэлементов, попадающих в почвы со сточными водами, газовыми выбросами и производственными отходами, ртуть представляет наибольшую опасность. Вследствие повышения фонового содержания ртути в биосфере, контроль за уровнем загрязненности почв ртутью является актуальной задачей. В работе [31] проводились исследования по определению ртути в почвах методом инверсионной вольтамперометрии с использованием анализатора вольтамперометрического ТА-4 (ООО «НПП Томьаналит»). Ртуть в почвах может находиться в виде различных соединений: молекулярных, комплексных, неорганических, а также металлорганических. Для перевода этих соединений в раствор в виде электрохимически активной формы ртути почву обрабатывали при нагревании или УЗ-воздействии различными окислителями: 1) HNO3; 2) HNO3 + H2O2; 3) H2SO4 + HNO3; 4) H2SO4 + HNO3 + (NH4)2S2O8; 5) HNO3 + HCl. Полученные кислотные вытяжки фильтровали и разбавляли в 25-50 раз обессоленной водой. Дополнительно вытяжки обрабатывали: 1) озоном; 2) кипятили с перекисью водорода; 3) подвергали микроволновому разложению. Анализировали как обработанные вытяжки, так и просто разбавленные. Определение ртути проводили на фоне серной кислоты и хлорида калия. Индикаторный электрод – углеродсодержащий, приготовленный из смеси сажи и полиэтилена по технологии «литье под давлением», с нанесенной пленкой золота на торец электрода. Проверку правильности результатов анализа проводили методом добавок. Результаты, полученные после озонирования и микроволной обработки, сравнимы с результатами анализа разбавленных вытяжек. Результаты анализа проб после кипячения с перекисью водорода занижены на 50-70 %.

Наиболее воспроизводимые сигналы, позволяющие получить достоверные результаты, были получены при анализе разбавленной кислотной вытяжки смесью H2SO4+HNO3+(NH4)2S2O8. УЗ-воздействие позволяет сократить процесс приготовления вытяжки в 15-20 раз. Однако, в почвенных вытяжках, обработанных ультразвуком, мешающее влияние ионов железа из-за их более высокой концентрации увеличивает погрешность определения ртути. [31]

Разработана методика определения мышьяка в пищевых продуктах и продовольственном сырье методом инверсионной вольтамперометрии на углеродсодержащих электродах, модифицированных золотом (ЗУЭ). Выбраны оптимальные условия модифицирования поверхности ЗУЭ и проведения измерений, позволяющие проводить анализ порядка трехсот проб без регенерации поверхности электрода. Мешающее влияние кислорода устраняли химическим способом, используя в качестве фонового электролита сульфит натрия. Мешающее влияние цинка, меди и железа снижали образованием прочных комплексов различного состава с edta4—анионом и выбором параметров регистрации вольтамперограмм. Применение дифференциально-импульсной развертки поляризующего напряжения позволяет уменьшить погрешность измерения концентрации мышьяка, благодаря упрощению обработки аналитического сигнала. Однако, количество проб, анализируемых с использованием этой формы развертки без регенерации поверхности ЗУЭ – не более двадцати. [32]

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее