166515 (685459), страница 3

Файл №685459 166515 (Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии) 3 страница166515 (685459) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Принцип накопления вещества и последующего его электрохимического растворения не является новым; он был, например, использован для измерения толщины металлических пленок. Збинден [4] уже в 1931 г. определял следовые количества меди, осаждая ее на платиновом электроде и измеряя зависимость анодного тока от времени при соответствующем постоянном потенциале в процессе растворения пленки металла.

В пятидесятых годах прием электролитического накопления и последующего электрохимического растворения вещества был распространен на многие электрохимические методы. Наибольшую известность получила вольтамперометрия с линейным изменением потенциала во времени [5 – 7] в связи с ее методической и инструментальной простотой.

Осциллографическая полярография [8] (рабочий электрод поляризуется переменным током с постоянной плотностью, амплитудой и частотой, а на экране осциллографа регистрируется функция d/dt = f(), квадратноволновая полярография [9] и переменнотоковая полярография [10], хронопотенциометрия и кулонометрия [11 – 13] могут быть также использованы для исследования процесса растворения. В некоторых случаях для повышения чувствительности определения применяют нестационарные методы. Для исследования процесса электрохимического растворения используются, таким образом, любые методы, основанные на изучении стационарных и нестационарных поляризационных кривых (табл. 1.3).

Таблица 1.3. Методы, применяемые при исследовании инверсионного процесса 3

Контролируемый параметр

Измеряемая функция

Название метода

Стационарные методы

I = f()

Вольтамперометрия при постоянном потенциале

Кулонометрия при постоянном потенциале

Q = f(c)

Полярографическая кулонометрия

I

Q = It

Кулонометрия при постоянном токе

Нестационарные (потенциостатические) методы

I = f(t)

Хроноамперометрия

= i + t

I = f()

Полярография и вольтамперометрия с переменным потенциалом (single sweep, multi-sweep)

+ (t)

I(t) = f()

Полярография и вольтамперометрия с наложением переменного напряжения (переменнотоковая полярография квадратноволновая полярография, импульсная полярография)

Нестационарные (гальваностатические) методы

I

= f(t)

Хронопотенциометрия

I + I sint

Осциллографическая полярография с переменным током

1.7 Избирательность определения

Рабочая область потенциалов для инверсионных электрохимических методов в водной среде находится в интервале от +1,5 до —2,5 В (от +0,2 до —2,5 В для ртутных электродов и от +1,5 до —0,7 В для графитовых электродов). В некомплексообразующих основных электролитах потенциалы пиков ряда элементов перекрываются или даже совпадают. Только в единичных случаях отличие в потенциалах пиков такое большое, что эти пики не оказывают друг на друга взаимного влияния. Относительно легко определить несколько металлов, если они находятся в растворе в одинаковых концентрациях. На практике, однако, часто требуется определить следовые количества одного вещества в присутствии большого избытка другого мешающего вещества, поэтому необходимо предварительно устранить его влияние.

Этого можно достигнуть, предварительно отделив мешающее вещество. Такой прием наиболее надежен, но на практике его применяют только в том случае, если для решения данной проблемы невозможно использовать другой, менее трудоемкий метод. Нежелательное влияние посторонних компонентов системы можно уменьшить и с помощью электрохимических способов: повышением избирательности накопления (например, применение потенциостата при определении металла в присутствии более электроотрицательного металла), выбором более селективного метода контроля процесса растворения (например, применение вольтамперометрии с переменной составляющей напряжения вместо классической вольтамперометрии или гальваностатического метода) или соответствующим подбором материала электрода.

В некоторых случаях можно сравнительно просто повысить избирательность при замене электролита: после стадии накопления выделенное вещество растворяется в чистом основном электролите или в другом пригодном растворе. Эти приемы до недавних пор были мало распространены, однако в настоящее время их применение расширяется [14], особенно в присутствии подходящих комплексообразующих реагентов [15].

1.8 Роль предварительного отделения в инверсионных электрохимических определениях

В ряде случаев, если определяемый компонент содержится в следовых концентрациях в очень сложных системах или же находится в присутствии очень большого избытка другого компонента (например, при анализе чистых реактивов, металлов и т. д.), предварительное отделение неизбежно. Для этой цели, как правило, применяют экстракционные и адсорбционные методы. Выбирая тот или иной метод для отделения, необходимо обращать особое внимание на то, чтобы компоненты системы не оказывали неблагоприятного влияния на исследуемую электролитическую реакцию (например, вследствие адсорбции поверхностью электрода избытка органических растворителей, или из-за появления следовых количеств поверхностно-активных веществ, выщелоченных из ионообменников, или в результате электрохимической реакции введенных реактивов и т. д.).

При экстракционном разделении обычно проводят реэкстракцию из органической фазы в водную или же органическая фаза минерализуется и растворяется в водном растворе перед непосредственным определением. Лишь в редких случаях, в основном при определении некоторых металлов, электролиз проводится прямо в неводной среде, в которой металл присутствует в виде ионного ассоциата. Этот прием перспективный, так как позволяет уменьшить число операций. К сожалению, имеется очень мало сведений по полярографии и вольтамперометрии комплексов металлов в неводной среде. [1]

1.9 Состояние и перспективы метода

В настоящее время в подавляющем большинстве инверсионных определений применяются процессы, сопровождаемые образованием амальгам металлов и металлических пленок (табл. 1.2, реакции 1 и 2). Другие процессы используются значительно реже. Как вытекает из вышеизложенного, электрохимические инверсионные методы являются очень подходящими для определения некоторых тяжелых металлов (Bi, In, Си, Tl, Pb, Cd, Sn, Zn) на ртутных электродах и некоторых благородных металлов (Ag, Hg) на твердых электродах. С помощью таких методов можно успешно определять указанные элементы в сплавах, чистых реактивах, водах, некоторых биологических материалах (в сыворотке крови, моче) и в некоторых продуктах питания.

Эти методы находят широкое применение при контроле загрязнений воды и воздуха. Например, классическая инверсионная вольтамперометрия часто используется для определения различных металлов в пресной и морской воде, а инверсионная вольтамперометрия с ртутным пленочным электродом на импрегнированной графитовой подложке — для контроля загрязнений воздуха [16].

Можно предположить, что значение и применение электрохимических инверсионных методов будет расширяться, особенно в связи с нарастающей важностью проблемы контроля загрязнений окружающей среды. Дальнейшее развитие этих методов зависит от фундаментальных исследований, которые концентрируются в нескольких основных направлениях.

Для более широкого применения инверсионных методов в текущих (серийных) и контрольных анализах необходима их автоматизация.

Электрохимические инверсионные методы в принципе невозможно использовать для непрерывных определений из-за необходимости осуществления последовательных стадий накопления и растворения, но они пригодны для выполнения автоматических серийных анализов в течение определенных временных интервалов, если имеется подходящая программирующая аппаратура. Хорошими примерами являются приборы с программным управлением, в которых используется ртутный стационарный капельный электрод [17] и вращающийся ртутный пленочный электрод [18].

Применение твердых электродов, особенно графитовых (в форме вращающихся дисковых электродов) или угольных пастовых, весьма перспективно. Эти электроды дают правильные и воспроизводимые результаты. Дальнейшее изучение пленочных ртутных электродов (это относится, прежде всего, к вращающимся дисковым электродам с тонким слоем ртути, осажденной in situ на графитовой подложке) позволит лучше использовать преимущества как ртутных, так и твердых электродов.

Интересны также различные методы измерения, которые до настоящего времени применялись лишь изредка, например потенциостатические и гальваностатические нестационарные методы, а в определенных случаях и полярография с переменной составляющей напряжения. Дальнейшее расширение возможностей электрохимических инверсионных методов может быть достигнуто путем сочетания с современными методами разделения, основанными на применении различных комплексообразующих реагентов, а также разными другими способами. Темпы развития этих методов зависят от состояния всех направлений электрохимии, теоретические данные которой могут быть полезны для разработки аналитических методик. С этой точки зрения особое значение имеют изучение кинетики электродных процессов на твердых электродах, адсорбционных явлений, электродных реакций с участием комплексов, электрохимических процессов в неводных средах, а также прогресс в аналитическом приборостроении (например, создание, приборов, основанных на операционных усилителях), который расширит набор методов исследования стадии растворения и позволит их полнее автоматизировать [1, 19, 20].

1.10 Примеры практических приложений инверсионных методов

В настоящее время в литературе имеется много примеров практического приложения инверсионных методов. В силу их разнородности невозможно привести полный обзор. Приведем несколько примеров анализа различных материалов, которые позволят составить представление о различных способах подготовки образца и о методах предварительного отделения.

Авторы [1] предлагают определение свинца в геологических образцах. Описывается методика подготовки образцов (циркона, монацита, пирохлора, гранита и андезита). Анодное определение свинца включает его продувку азотом, затем проводится предварительный электролиз на висящем ртутном капельном электроде при —0,6 В в течение 1 мин при перемешивании. После стадии успокоения (30 с) потенциал изменяется до 0 В со скоростью 40 мВ/с и регистрируется I—-кривая. Концентрация свинца определяется по градуировочной кривой. При определении 3-10-3 % Рb, как указывают авторы [1, 21], относительное стандартное отклонение составляет 10%. Разрешение пиков In и Cd и пика Рb хорошее, но определению мешают высокие концентрации Тl.

В работе [22] показана возможность определения примесей кадмия, индия и цинка в свинце методом инверсионной вольтамперометрии. 0,2 г образца металлического свинца в кварцевом стаканчике растворяется в 5 мл горячей 3 М HNO3; Рb удаляется путем электролиза раствора с платиновым сеточным анодом при i = 0,1 А/см2 в течение 1,5 ч. В течение этого времени без прерывания тока электроды 4 раза вынимаются из раствора и осажденный РbО2 растворяется в 6—10 мл HNO3, содержащей 0,1 мл Н2О2. Затем раствор выпаривается досуха, и к остатку добавляется 3 мл Н2О. Выпаривание повторяется еще 3 раза. Наконец, остаток растворяется в 3 мл основного электролита (0,01 М KCl). Если используется ртутный пленочный электрод, то в первую очередь определяют Zn (el = - 1,6 В, el зависит от концентрации Zn). Для лучшего разрешения пиков Cd и In добавляется капля 1%-ного раствора этилендиамина; электролиз проводится в течение 3 мин при —1,6 В и определяются Cd и In [p(Zn) = - 1,1 В; р(In) = - 0,75 В; p(Cd) = - 0,65 В]. При содержании 10-6 - 10-8 г/л рассмотренных элементов погрешность составляет 10-20%.

При определении свинца, меди и кадмия в пробах загрязненного атмосферного воздуха авторами [16] использовалась следующая методика. Образцы поглощались на стандартных фильтрах (размер 20 25 см) из стеклянных волокон (такие фильтры обычно используются при анализе суспендированных частиц). Из сложенного фильтра вырезаются два одинаковых квадрата (площадью по 13 см2), они разрываются на части и помещаются в мерную колбу 25 мл с узким горлом. Органические вещества разлагаются при добавлении 4 мл НСlО4 и последующим нагревании до 300°С в течение 30 мин. После этого колба заполняется водой до метки и оставляется стоять на 1—2 сут. Тем же способом подготавливается и контрольный опыт (кусочки фильтра имеют ту же величину). Из колбы с образцом затем отбирается аликвотная часть, соответствующая содержанию примесей в ~0,3 м3 воздуха, и в ней при обычных условиях на ртутном пленочном электроде с графитовой подложкой, импрегнированной воском, определяются Рb, Сu и Cd. Вначале проводится анализ контрольных растворов и лишь после этого — анализ образца. Поправка контрольного опыта вычитается. Контроль определения осуществляется благодаря проведению анализа образца с одного фильтра в двух разных ячейках, а при повторении анализа используются другие части фильтра. Предел обнаружения названных металлов ~10-6 г/м3. Были проведены исследования содержания свинца в биологических объектах. Например, в работе [23] проведено исследование содержания свинца в крови. 1 мл пробы крови помещается в колбу Киельдаля объемом 100 мл и минерализуется 2,5 мл 20%-ной H2SO4 в HNO3. Спустя 10 мин температура повышается до тех пор, пока не начнут выделяться белые пары H2SO4, после чего смесь охлаждается. Последовательно добавляют 1 мл HNO3, 1 мл 10%-ной НСlО4, две порции по 1 мл НСl (1 : 1) и, наконец, 5 мл воды. После каждой добавки раствор вновь нагревается до появления белых паров H2SO4. После охлаждения к образцу добавляют 20 мл воды и колбу нагревают до тех пор, пока не растворится весь осадок. После охлаждения весь объем раствора переносится в электролизер и проводится накопление при потенциалах от —0,6 до - 0,8В в течение 10 мин. Свинец определяют осциллографической полярографией с переменным током. Определению не мешает железо в концентрациях, в которых оно обычно присутствует в крови (~500 мкг/мл).

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6294
Авторов
на СтудИзбе
314
Средний доход
с одного платного файла
Обучение Подробнее