2953 (684847), страница 10

Файл №684847 2953 (Споживче кредитування та його розвиток в Україні) 10 страница2953 (684847) страница 102016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Бюро створюється у формі господарського товариства, cтатутний капітал Бюро формується виключно за рахунок грошових коштів засновників Бюро і має бути не менше п'яти мільйонів гривень. У назві Бюро обов'язково зазначаються слова "бюро кредитних історій". Предметом діяльності Бюро є виключно ведення кредитних історій, а також здійснення іншої діяльності, що має на меті реалізацію положень цього Закону. Бюро починає здійснення своєї діяльності з моменту отримання ліцензії.

На сьогоднішній день в Україні зареєстровані та розпочали своє функціонування перших 3 бюро кредитних історій, що повинно суттєво знизити ризики технологій масового споживчого кредитування населення:

1. ТОВ “Українське бюро кредитних історій” (засновники ЗАТ КБ “ПриватБанк” і іноземна компанія BigOptima Limited). Державна реєстрація ТОВ “Українське бюро кредитних історій” датована 6 червня 2005 року [48].

На сьогоднішній день ТОВ “Українське бюро кредитних історій” є єдиним реально діючим та може надати доступ до більш ніж 10 000 000 кредитних історій як фізичних, так юридичних осіб, що складає близько 40 % усього працездатного населення України.

2. Перше всеукраїнське бюро кредитних історій (засновники Асоціація українських банків, 30 банків і дві страхові компанії) [49].

3. Національне бюро кредитних історій — вже третє кредитне бюро в Україні [49]. Його засновники — Національна асоціація кредитних спілок України, міжнародна холдингова компанія Creditinfo Group, що спеціалізується на системах та інструментах кредитного менеджменту, а також інвестиційно-фінансова група «ТАС».

3.2 Нові види споживчого кредитування

Підвищення прибутковості кредитних операцій безпосередньо зв'язано з якістю оцінки кредитного ризику. У залежності від класифікації клієнта по групах ризику банк приймає рішення, чи варто видавати кредит чи ні, який ліміт кредитування і відсотки варто встановлювати.

У світовій практиці існує два основних методи оцінки ризику кредитування, що можуть застосовуватися як окремо, так і в сполученні з один одним [31, с.25]:

суб’єктивний висновок експертів або кредитних інспекторів;

автоматизовані системи скоринга.

Фінансовий скоринг – новий термін в практиці роботи комерційних банків України з споживчими кредитами населенню.

Через підвищення конкуренції і росту стимулів для кращих результатів кредитні й інші фінансові установи змушені шукати більш ефективні шляхи контролю над витратами. Агресивні маркетингові проекти по залученню нових клієнтів і необхідність швидко на них реагувати привели до росту автоматизації процесу експертизи і надання кредитів і страховок. Іншими словами, виникає приваблива перспектива поставити видачу кредитів на потік, використовуючи деякий математичний формалізм і накопичені статистичні дані.

У сфері роздрібного кредитування ризик-менеджерові тепер приходиться приймати такі рішення по наданню кредиту, за допомогою яких можна не тільки адекватно оцінити кредитоспроможність клієнта, але і зберегти витрати на низькому рівні, зменшуючи час, затрачуваний на один клієнта. Також для ідеального обслуговування клієнтів потрібно, щоб це автоматизоване рішення відмовляло в кредиті як можна меншому числу кредитоспроможних клієнтів і в той же час відсівало якнайбільше потенційних порушників

Ризик-менеджери залучаються для допомоги у виборі для привілейованого обслуговування "правильних" клієнтів, тобто клієнтів, що несуть найменший ризик. Навпроти, у відношенні до клієнтів, що демонструють негативне поводження (неплатежі, шахрайство), ризик-менеджери повинні застосовувати стратегії, що дозволяють не тільки ідентифікувати їх, але й ефективно вживати заходів, щоб мінімізувати подальші втрати.

Ключовим поняттям нової технології роботи кредитного ризик-менеджера є скоринг та скорингові таблиці.

Система скоринга для оцінки кредитоспроможності це, насамперед, той або інший вид математичної моделі, що дозволяє ставити конкретному потенційному позичальникові, кожний з яких описується рядом параметрів, у відповідність деяку величину, що оцінює кредитну якість позичальника.

Здебільшого, які б математичні розуміння не закладалися в підставу скорингової моделі, скоринг являє собою зважену суму факторів ризику кредитної якості позичальників:

S = a1 * X1 + a2 * X2 + ... + ak * Xk (3.1)

де S значення скоринга,

X1,X2...Xk параметри клієнта, що входять в оцінку його кредитної якості,

a1,a2...ak ваги, що характеризують значимість відповідних параметрів клієнта (фактори ризику його кредитоспроможності) для формування його кредитного скоринга.

Для зниження витрат і збільшення пропускної здатності системи скоринга, крім математичної моделі, необхідна її програмна реалізація. Необхідно також мати систему регламентів і процедур, що задають правила експлуатації системи скоринга.

Скоринг є одним з найбільш успішних прикладів використання математичних і статистичних методів у бізнесі, що у даний час широко застосовуються у всіх економічно розвитих країнах. Скоринг використовується головним чином при кредитуванні фізичних осіб, особливо в споживчому кредиті при незабезпечених позичках, та являє собою математичну або статистичну модель, за допомогою якої на основі кредитної історії «минулих» клієнтів банк намагається визначити, наскільки велика імовірність, що конкретний потенційний позичальник поверне кредит у визначений термін.

У західній банківській системі, коли людина звертається за кредитом, банк може мати наступну інформацію для аналізу [79, с.14]:

анкета, яку заповнює позичальник;

інформація на даного позичальника з кредитного бюро організації, у якій зберігається кредитна історія всього дорослого населення країни;

дані рухів по рахунках, якщо мова йде про вже діючого клієнта банку.

У самому спрощеному виді скорингова модель являє собою зважену суму визначених характеристик. У результаті виходить інтегральний показник (score); чим він вище, тим вище надійність клієнта, і банк може упорядкувати своїх клієнтів по ступеню зростання кредитоспроможності.

Інтегральний показник кожного клієнта порівнюється з якимсь числовим порогом, або лінією розділу, що, власне кажучи, є лінією беззбитковості і розраховується з відношення, скільки в середньому потрібно клієнтів, що платять у термін, для того, щоб компенсувати збитки від одного боржника. Клієнтам з інтегральним показником вище цієї лінії видається кредит, клієнтам з інтегральним показником нижче цієї лінії – не видається.

Усе це виглядає дуже просто, однак складність полягає у визначенні, які характеристики варто включати в модель і які вагові коефіцієнти повинні їм відповідати. Скоринг виділяє ті характеристики, що найбільш тісно зв'язані з ненадійністю або, навпаки, з надійністю клієнта. Скорингова модель не знає, чи поверне даний позичальник кредит, але знає, що в минулому люди цього віку, цієї ж професії, з таким же рівнем освіти і з таким же числом утриманців кредит не повертали. Тому скорингова система давати кредит цій людині не рекомендуватиме.

У цьому полягає дискримінаційний (не в статистичному, а в соціальному значенні цього слова) характер скоринга, тобто якщо людина по формальних ознаках близька до групи з поганою кредитною історією, то йому кредит не дадуть. Тому навіть при дуже високому ступені використання автоматизованих систем скоринга здійснюється суб'єктивне втручання у випадку, коли кредитний інспектор має додаткову інформацію, що доводить, що людина, класифікована як ненадійна, насправді «гарна», і навпаки.

У Великобританії найбільше часто використовуються наступні характеристики для оцінки кредитного ризику [75, с.32]:

Вік

Кількість дітей/утриманців

Професія

Професія чоловіка(і)

Доход

Доход чоловіка(і)

Район проживання

Вартість житла

Наявність телефону

Скільки років живе по даній адресі

Скільки років працює на даній роботі

Скільки років є клієнтом даного банку

Наявність кредитної картки/чекової книжки

В інших країнах набір характеристик, що найбільше тісно зв'язані з імовірністю дефолта імовірністю, що позичальник не поверне кредит або затримається з виплатою, буде відрізнятися в силу національних економічних і соціально-культурних особливостей. Чим більш однорідна популяція клієнтів, на якій розробляється модель, тим точніше прогнозування дефолта. Тому очевидно, що не можна автоматично перенести модель з однієї країни в іншу або з одного банку в іншій. Навіть усередині одного банку існують різні моделі для різних груп клієнтів і різних видів кредиту.

З метою побудови моделі спочатку виділяється вибірка клієнтів кредитної організації, про яких уже відомо, гарними позичальниками вони себе зарекомендували чи ні, іноді така вибірка називається «навчальною». Вона може варіюватися від декількох тисяч до сотні тисяч, що не є проблемою на Заході, де кредитний портфель банку може складатися з десятків мільйонів клієнтів. Вибірка підрозділяється на дві групи: «гарні» і «погані» ризики. Це виправдано в тім змісті, що банк при ухваленні рішення про кредитування на першому етапі вибирає з двох варіантів: давати кредит або не давати. При всій «дитячості» визначень «гарний»/«поганий», це саме ті терміни, що використовуються кредитними аналітиками.

Визначення «поганого» ризику може бути різним у залежності від політики банку, у Західній Європі «поганим» ризиком звичайно вважається клієнт, що затримується з черговою виплатою на три місяці. Іноді до «поганого» ризику відносяться клієнти, що занадто рано повертають кредит, і банк не встигає нічого на них заробити.

Таким чином, скоринг являє собою класифікаційну задачу, де виходячи з наявної інформації необхідно одержати функцію, що найбільше точно розділяє вибірку клієнтів на «поганих» і «гарних».

Методи власне класифікації досить різноманітні і містять у собі [68]:

статистичні методи, засновані на дискримінантному аналізі (лінійна регресія, логістична регресія);

різні варіанти лінійного програмування;

дерево класифікації або рекурсійно-партиційний алгоритм (РПА);

нейронні мережі;

генетичний алгоритм;

метод найближчих сусідів.

Традиційними і найбільш розповсюдженими є регресійні методи, насамперед лінійна багатофакторна регресія :

р = wo + w1x1 + w2x2 + … + wnxn , (3.2)

де р імовірність дефолта, w вагові коефіцієнти, x – характеристики клієнта.

Недолік даної моделі полягає в тім, що в лівій частині рівняння знаходиться імовірність, що приймає значення від 0 до 1, а перемінні в правій частині можуть приймати будьяк значення від – до + .

Логістична регресія дозволяє перебороти цей недолік:

log (p/(1p)) = wo + w1x1 + w2x2 + … + wnxn... (3.3)

Для застосування логістичної регресії необхідні набагато більш складні розрахунки для одержання вагових коефіцієнтів і, отже, більш могутня комп'ютерна база й удосконалене комп'ютерне забезпечення. Але при сучасному рівні розвитку комп'ютерної техніки це не є проблемою, і в даний час логістична регресія є лідером скорингових систем.

Перевага логістичної регресії ще й у тім, що вона може підрозділяти клієнтів як на дві групи (0 поганий, 1 гарний), так і на кілька груп (1, 2, 3, 4 групи ризику).

Усі регресійні методи чуттєві до кореляції між характеристиками, тому в моделі не повинні бути сильно корельовані незалежні перемінні.

Лінійне програмування також приводить до лінійної скорингової моделі. Провести абсолютно точну класифікацію на поганих і гарних клієнтів неможливо, але бажано звести помилку до мінімуму. Задачу можна сформулювати як пошук вагових коефіцієнтів, для яких помилка і буде мінімальною.

Дерево класифікації і нейронні мережі являють собою системи, що розділяють клієнтів на групи, усередині яких рівень ризику однаковий і максимально відрізняється від рівня ризику інших груп. Нейронні мережі використовуються головним чином при визначенні кредитоспроможності юридичних осіб, де аналізуються вибірки меншого розміру, ніж у споживчому кредиті. Але найбільш успішною областю їх застосування стало виявлення шахрайства з кредитними картками завдяки їх здатності виявляти нестандартні ситуації.

Генетичний алгоритм заснований на аналогії з біологічним процесом природного добору. У сфері кредитування це виглядає в такий спосіб: мається набір класифікаційних моделей, які піддаються «мутації», «схрещуються», і в результаті відбирається «найсильніший», тобто модель, що дає найбільш точну класифікацію.

При використанні методу найближчих сусідів вибирається одиниця виміру для визначення відстані між клієнтами. Усі клієнти у вибірці одержують визначене просторове положення. Кожен новий клієнт класифікується виходячи з того, яких клієнтів поганих або гарних більше довкола нього.

Характеристики

Тип файла
Документ
Размер
36,56 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7006
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}