CBRR4293 (677223), страница 21

Файл №677223 CBRR4293 (Литература - Другое (книга по генетике)) 21 страницаCBRR4293 (677223) страница 212016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)

ваны в качестве модельной системы для анализа механизмов

тканеспецифической активации генов in vivo.

Матричная РНК является наиболее удобным обьектом для

изучения регуляции транскрипции генов и посттранскрипционных

модификаций РНК. Тотальная клеточная РНК сотоит на 90 - 95%

из рибосомальных и транспортных РНК, тогда как доля трансли-

руемых или poly(A)+ РНК не превышает 5% (Льюин, 1987). При

этом, концентрация РНК-транскриптов индивидуальных генов

среди всех молекул мРНК, в среднем, колеблется в пределах от

0.01% до 0.001% (Гайцхоки, 1978). Поэтому для обнаружения

индивидуальных типов мРНК должны использоваться высоко-

чувствительные методы. Обычным методом идентификации мРНК на

тканевом и клеточном уровнях является гибридизация in situ

РНК- или ДНК-зондов с молекулами мРНК на гистологических

срезах (Хаффнер, Уиллисон,1990). В качестве ДНК-зондов

используют клонированные последовательности кДНК и синтети-

ческие олигонуклеотиды. После инкубации меченых зондов на

цитологических препаратах с последующей тщательной отмывкой

несвязавшихся молекул положение комплементарных РНК-последо-

вательностей в клетках определяют радиоавтографическими, ли-

бо в случае биотинового мечения - иммуногистохимическими ме-

тодами. Оптимальные условия гибридизации дают возможность не

только выявлять присутствие специфических мРНК, но и опреде-

лить их внутриклеточную локализацию (Манк, 1990; Хаффнер,

Уиллисон, 1990; Boehringer, Mannual, 1994).

Анализ индивидуальных РНК включает изоляцию из тканей

пула неповрежденных биологически активных мРНК и идентифика-

цию среди них специфических молекул путем использования раз-

личных вариантов ДНК-РНК гибридизации. Для генов с высоким

уровнем транскрипции могут быть пригодны дот или слот блоты

(см.Главу I). Когда источником РНК служат клетки, которые не

могут быть получены в большом количестве, используют цитоп-

лазматический дот-блот. При этом целые клетки лизируют, и

фиксируют непосредственно на тех мембранах, на которых про-

водят гибридизацию. Значительно большой чувствительностью

обладает, так называемый Northern blot (нозерн-блот) - гиб-

ридизация с ДНК- зондами на фильтрах предварительно скон-

центрированных и фракционированных путем электрофореза моле-

кул РНК (Sambrook et al., 1987). Электрофорез проводят в

агарозе с добавлением формальдегида, денатурирующего РНК. В

этих условиях скорость продвижения молекул РНК через гель

находится в логарифмической зависимости от длины последова-

тельности, что позволяет точно определить размер РНК

транскрипта. Основная масса РНК на геле представлена в виде

двух доминирующих бэндов, соответствующих двум типам рибосо-

мальной РНК - 28S и 18S. Все молекулы мРНК сконцентрированы

в плохо различимой, слабо окрашенной области геля, в которой

отдельные типы мРНК могут быть выявлены только путем гибри-

дизации с соответствующими ДНК-зондами. Нозерн-блот имеет то

преимущество, что при электрофорезе могут быть разделены мо-

лекулы РНК, дающие перекрестную гибридизацию с ДНК-зондом.

Кроме того, характер электрофоретического разделения позво-

ляет визуально оценить качество изолированной РНК. При очень

низких концентрациях специфических мРНК или в тех случаях,

когда ДНК-зонды дают перекрестную гибридизацию с другими

компонентами (не мРНК), проводят обогащение изолированной

тотальной РНК транслируемыми мРНК путем отбора на колонках

фракций, содержащих поли-A "хвосты". Для этого выделенную

РНК пропускают через короткую колонку с пришитыми поли-T

олигонуклеотидными последовательностями и высокой концентра-

цией солей в буферном растворе, так чтобы молекулы мРНК, со-

держащие поли -A "хвосты", задерживались на колонке. При

снижении концентрации солей в буфере происходит расплавление

A-T дуплексов и высвобождение молекул мРНК. Таким способом

доля этих молекул в определенных солевых фракциях может быть

увеличена на два порядка. Конечно, поли-A селекция применима

в тех случаях, когда имеется достаточно большое количество

тотальной РНК. Другим методом для исследования структуры РНК

транскриптов является S1-анализ. В этом случае ДНК-РНК гиб-

ридизацию ведут в растворе, куда и добавляют S1 нуклеазу для

переваривания однонитевых несвязавшихся молекул как ДНК, так

и РНК, после чего проводят электрофоретическую очистку дуп-

лексов, которые затем элюируют из геля для последующего ана-

лиза (Sambrook et al.,1989). Этот метод очень удобен для

анализа стартовых сайтов и 3'-концов генов, для определения

направления транскрипции и картирования интронов.

Уровень мРНК в клетке определяется несколькими кинети-

ческими параметрами - скоростью первичного синтеза, эффек-

тивностью процессинга РНК-транскриптов и периодом полураспа-

да зрелых молекул мРНК. Последний параметр определяют по ди-

намике исчезновения мРНК после добавления к клеткам актино-

мицина D, специфическим образом супрессирующего транскрип-

цию.

Исследование механизмов транскрипции и процессинга пер-

вичных РНК-транскриптов проводят in vitro с использованием

искусственным образом сконструированных транскрипционных

систем (Manley et al., 1986; Dignam et al., 1983;

Gutierrez-Hartmann et al., 1987; Хэймс,Хиггинс, 1987). Для

этого могут быть выбраны два различных подхода. В первом

случае изолируют ядра и в качестве транскрипционной матрицы

используют неповрежденный хроматин. Синтез РНК проводят с

добавлением всех необходимых реагентов и, в частности, три-

фосфатов, в один из которых (обычно в урацил) вводят ради-

оактивную метку. При этом вновь синтезированные молекулы РНК

оказываются мечеными. Выбор специфических молекул РНК прово-

дят путем ДНК-РНК гибридизации, однако, в отличие от ранее

описанных методов анализа мРНК, используют немеченые

кДНК-зонды, предварительно нанесенные на фильтры. Большим

достоинством этой транскрипционной системы является ее

максимальная приближенность к естественным процессам. При

втором подходе транскрипция ведется с клонированных фрагмен-

тов ДНК, а ядерные экстракты служат источником ферментов и

регуляторных белков.

Раздел 6.3 Анализ трансляции, ДНК-экспрессионные систе-

мы.

Традиционные методы анализа регуляции трансляции и

посттрансляционных модификаций белков основаны на использо-

вании модельных систем, представляющих собой цитоплазмати-

ческие свободные от мРНК безядерные экстракты клеток, содер-

жащие рибосомальный аппарат, транспортные РНК, набор амино-

кислот и ферментов, необходимых для трансляции и процессинга

белков (Хэймс, Хиггинс, 1987; Клеменс, 1987 ). После добав-

ления к такой системе специфической мРНК происходит синтез

соответствующей полипептидной цепи in vitro. При введении

меченых аминокислот в систему вновь синтезированные белки

после электрофоретической очистки могут быть идентифицирова-

ны путем радиоавтографии либо иммунологическими методами,

при наличии соответствующих антител (Клеменс, 1987). Однако,

для значительного числа моногенных наследственных заболева-

ний первичный биохимический дефект неизвестен, а следова-

тельно, не идентифицированы и мРНК транскрипты. Биохими-

ческое изучение многих белков затруднено из-за их минорного

содержания и отсутствия эффективных методов выделения и

очистки. Последнее обстоятельство в значительной мере от-

носится к нерасворимым белкам, ассоциированным с мембранными

структурами клеток.

ДНК-экспрессионные системы, то есть клеточные культу-

ры, синтезирующие чужеродные белки, являются очень мощным

средством анализа структуры, функции и синтеза белков

(Sambrook et al., 1989). Такие системы конструируют на осно-

ве экспрессионных векторов, содержащих в своем составе силь-

ные промоторы и регуляторные последовательности, обеспечива-

ющие высокий, но в то же время регулируемый уровень

экспрессии. Кодирующие последовательности чужеродных генов

инсертируют (вставляют) с помощью соответствующих генно-ин-

женерных приемов в область действия этих промоторов. Конеч-

но, такие системы должны содержать и трансляционные сигналы,

в частности, сайты связывания рибосом, обеспечивающие работу

рибосомального аппарата клеток хозяина. В некоторых случаях

экспрессионные векторы вводят в мутантные по протеазным ге-

нам клеточные культуры, с тем чтобы предотвратить деградацию

чужеродных белков в клетках.

Существует три типа экспрессионных систем - бактериаль-

ные, сконструированные обычно на основе E.coli, дрожжевые и

экспрессионные культуры клеток млекопитающих. Каждая из этих

систем имеет свои преимущества и недостатки. Бактериальные

системы наиболее удобны для клонирования, обладают высоким

уровнем экспрессии (до 1-2 грамм белка на литр культуры) и

их используют, обычно, для производства большого количества

чистого белка, необходимого для получения антител или для

фармацевтических целей. Удобны также эти системы для введе-

ния изменений в различные районы полипептидной цепи путем

сайт-направленного мутагенеза в нуклеотидной последователь-

ности чужеродной ДНК. Получение и исследование таких "му-

тантных" белков очень важно для оценки функциональной значи-

мости различных участков белка.

Уровень экспрессии чужеродных белков в дрожжевых клет-

ках вдвое, а в клетках млекопитающих в десятки раз ниже, чем

в бактериальных. Однако, в бактериальных клетках отсутствуют

ферментативные системы, обеспечивающие процессинг эукариоти-

ческих белков. Поэтому эукариотические системы удобнее

использовать для изучения посттрансляционных модификаций

белка - гликозилирования, то есть присоединения к полипеп-

тидной цепи углеводных остатков; скручивания белка с образо-

ванием третичной структуры, часто, за счет возникновения

дисульфидных связей; и N-концевых модификаций, стабилизирую-

щих структуру белка. В ДНК-экспрессионных системах может

быть синтезировано достаточно много белка, чтобы получить

его в кристаллической форме и исследовать пространственную

структуру и функциональное назначение отдельных доменов

(Хэймс, Хиггинс, 1987).

Использование экспрессионных библиотек для изоляции ко-

дирующих последовательностей гена рассматривалось ранее (см.

Глава II). После секвенирования кДНК можно, исходя из гене-

тического кода, прогрозировать аминокислотный состав белка и

произвести компьюторный поиск в банке данных гомологичных

последовательностей в составе белков с уже известной струк-

турой и функциями. Выявление родственных белков, близких по

своему полипептидному составу, значительно ускоряет и облег

чает дальнейший молекулярный анализ функционирования иссле-

дуемого белка в клетке. Аминокислотная последовательность

белка позволяет прогнозировать его третичную структуру,

идентифицировать домены, оценивать функциональную значимость

целого белка и отдельных его компонентов. Не менее важным

практическим следствием этих данных является также возмож-

ность получения антител к строго специфичным участкам бел-

ка. Для этого могут быть использованы два подхода - биохими-

ческий и молекулярно-генетический. В первом случае для имму-

низации используют искусственно синтезированные полипептиды,

которые пришивают к белковой молекуле-носителю (гаптену).

Размеры таких полипептидов, обычно, не превышают 30 амино-

кислот - они не могут быть очень большими из-за высокой сто-

имости и трудоемкости синтеза длинных молекул. При втором

подходе экзонные участки гена инсертируют в экспрессионный

вектор в область, кодирующиую селектируемый белок. В резуль-

тате экспрессии такой конструкции получают слитый белок, в

котором наряду с аминокислотной последовательностью селекти-

руемого маркера содержится определенный фрагмент исследуемо-

го белка. Эту химерную молекулу и используют для иммунизации

животных и получения моновалентных или моноклональных анти-

тел. При наличии антител могут быть применены различные им-

мунологические подхооды для анализа тканеспецифического и

Характеристики

Тип файла
Документ
Размер
1,68 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7032
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее