CBRR4293 (677223), страница 16
Текст из файла (страница 16)
РНК, комплементарных определенным участкам ДНК, так называе-
мых первичных РНК транскриптов. Транскрибируемые участки ДНК
носят название генов. Рибонуклеиновые кислоты (РНК) по своей
структуре очень сходны с молекулами ДНК. Они также состоят
из четырех нуклеотидов, только одно из пиримидиновых основа-
ний - тимин, заменено на урацил и в сахарозном остове вместо
дезоксирибозы представлена рибоза. Молекулы РНК существуют
только в однонитевой форме, но могут образовывать дуплексы с
молекулами ДНК. После синтеза молекулы РНК претерпевают
достаточно сложную модификацию - процессинг. При этом про-
исходят изменения в концевых участках молекул и вырезаются
области, гомологичные интронам - некодирующим частям гена.
Этот процесс называется сплайсингом. В результате из первич-
ных РНК транскриптов образуются молекулы информационной или
матричной РНК (мРНК), представляющие собой непрерывную
последовательность нуклеотидов, гомологичную только экзонам
- смысловым участкам гена. Молекулы мРНК в виде рибонуклео-
протеиновых гранул выходят из ядра в цитоплазму и соединяют-
ся с рибосомами, где происходит процесс трансляции - синтез
полипептидной цепи. Трансляция мРНК происходит в точном со-
ответствии с генетическим кодом, согласно которому последо-
вательность из трех нуклеотидов РНК - кодон, соответствует
определенной аминокислоте или сигналу терминации синтеза по-
липептидной цепи (Табл.1.1). Реализация генетического кода
осуществляется с участием 20-ти типов транспортных РНК
(тРНК), единственных нуклеиновых кислот, содержащих в своем
составе наряду с нуклеотидами одну из аминокислот. тРНК име-
ют кленовообразную форму, в хвостовой части молекулы распо-
ложена определенная аминокислота, в точном соответствии с
последовательности из трех нуклеотидов в области, называемой
антикодоном. Прохождение мРНК по рибосоме является сигналом
приближения к рибонуклеопротеидному комплексу той тРНК, у
которой последовательность нуклеотидов в антикодоне компле-
ментарна кодирующему триплету мРНК. Таким образом транспор-
тируется соответствующая аминокислота и осуществляется пос-
ледовательный синтез полипептидной цепи. Митохондрии имеют
свою автономную систему белкового синтеза: рибосомальные
РНК, мРНК и транспортные РНК.
Генетический код универсален для всех живых существ -
это одно из его главных свойств. Небольшие отличия в струк-
туре кода найдены только для митохондриальной ДНК. Так в ми-
тохондриальном генетическом коде стоп кодонами являются
триплеты АГА и АГЦ, кодирующие аргинин в ядерной ДНК
(Табл.1.1). Универсальность генетического кода служит наибо-
лее веским аргументом в пользу гипотезы об едином источнике
возникновения жизни на земле и о филогенетическом родстве
всех видов живых существ. Кроме того, именно это свойство
обеспечивает возможность прочтения в любых модельных клеточ-
ных системах искусственно введенной генетической информации,
сконструированной из фрагментов ДНК разного видового про-
исхожденеия. Таким образом, вся генная инженерия основана на
универсальности генетического кода. Другим свойством генети-
ческого кода является его вырожденность, заключающаяся в
том, что все аминокислоты кроме двух кодируются несколькими
вариантами триплетов. Действительно, из 64 возможных комби-
наций нуклеотидных триплетов РНК три соответствуют термини-
рующим кодонам - ochre, amber и opal, остальные варианты
(61) кодируют 20 аминокислот, причем триплеты, кодирующие
одну и ту же аминокислоту, как правило, различаются по
третьему нуклеотиду в кодоне. Таким образом, зная нуклеотид-
ную последовательность кодирующего участка ДНК, можно одноз-
начно прогнозировать аминокислотную последовательность соот-
ветствующего полипептидного фрагмента, тогда как одна и та
же аминокислотная последовательность может кодироваться раз-
личным образом. При этом, число возможных вариантов кодирую-
щих ДНК резко возрастает с увеличением длины полипептида.
На следующем этапе полипептидные цепи транспортируются
к специфическим органеллам клетки и модифицируются с образо-
ванием зрелого функционально активного белка. В некоторых
случаях информация с молекул РНК может обратно транскрибиро-
ваться в молекулы ДНК. В частности, при обратной транскрип-
ции мРНК образуются молекулы комплементарной ДНК - кДНК, в
которой в зависимости от полноты процесса представлены
частично или полностью все смысловые кодирующие последова-
тельности гена. Рассмотренная схема реализации однонаправ-
ленного потока информации ДНК-РНК-Белок составляет основу
центральной молекулярно-биологической догмы - рис.1.1.
Более детально с процессами репликации, транскрипции,
процессинга и трансляции можно ознакомиться в многочисленных
руководствах по молекулярной биологии, цитологии и генетике
(Стент, Кэлиндер, 1981; Зенгер, 1987; Льюин, 1987).
1.2 Выделение ДНК, ее синтез и рестрикция.
ДНК может быть изолирована из любого типа тканей и кле-
ток, содержащих ядра. Этапы выделения ДНК включают быстрый
лизис клеток, удаление с помощью центрифугирования фрагмен-
тов клеточных органелл и мембран, ферментативное разрушение
белков и их экстрагирование из раствора с помощью фенола и
хлороформа, концентрирование молекул ДНК путем преципитации
в этаноле. Из 1 грамма сырой ткани или из 10!9 клеток обычно
получают 2 миллиграмма ДНК. У человека ДНК, чаще всего, вы-
деляют из лейкоцитов крови, для чего собирают от 5 до 20 мл
венозной крови в стерильную пробирку с раствором, пре-
пятствующим коагуляции (например, с глюгециром или гепари-
ном). Затем отделяют лейкоциты и разрушают клеточные и ядер-
ные мембраны добавлением буферных растворов, содержащих де-
натурирующие агенты. Наилучшие результаты при выделении ДНК
дает применение протеиназы-К с последующей фенол - хлоро-
формной экстракцией разрушенных белков. ДНК осаждают в эта-
ноле и растворяют в буферном растворе. Оценку качества экс-
трагированной ДНК проводят на основании измерения оптической
плотности раствора ДНК в области белкового и нуклеинового
спектров поглощения. В чистых образцах ДНК соотношение
А(260)/A(280) > 1.8. В противном случае процедуру очистки
необходимо повторять, так как для успешного использования и
хранения ДНK белки должны быть полностью удалены. Более под-
робно с методами выделения и очистки ДНК из различных тканей
можно ознакомиться в работах и руководствах, приведенных в
конце книги (Маниатис и др., 1984; Дейвис, 1990; Горбунова и
др., 1991).
В процессе сложного и многообразного функционирования
различные участки хромосом и ДНК претерпевают разнообразные
регулируемые и, в основе своей, обратимые изменения. Эти мо-
дификации осуществляются с помощью специальных белков - фер-
ментов. Описание ферментативного аппарата репликации, транс-
крипции, репарации - системы защиты и восстановления повреж-
денных участков ДНК, рекомбинации, то есть обмена участками
гомологичных хромосом и ДНК, далеко выходит за рамки нашего
изложения. Мы кратко ознакомимся только с двумя классами
ферментов ДНК - полимеразами и рестриктазами, особенно важ-
ными для понимания основ современной молекулярной диагности-
ки.
Ферменты, осуществляющие синтез ДНК, называются ДНК-по-
лимеразами. И в бактериальных клетках, и в клетках эукариот
содержатся три различные формы ДНК-полимераз, все они обла-
дают синтезирующей активностью и способны удлинять цепи ДНК
в направлении 5' - 3', последовательно наращивая по одному
нуклеотиду к 3'-OH концу, причем точность синтеза определя-
ется специфичностью спаривания оснований. Таким образом, для
работы ДНК-полимеразы необходима однонитевая матричная ДНК с
двухнитевым участком на 3'- конце молекулы. Кроме того, в
среде должны присутствовать четыре типа трифосфатов (dATP,
dCTP, dGTP и dTTP) - молекул, состоящих из основания -A,C,G
или T, сахара - дезоксирибозы (d) и трех фосфатных остатков
(P). В клетках эукариот репликацию осуществляет ДНК-полиме-
раза альфа, а в клетках E. coli - ДНК-полимераза 111.
ДНК-полимеразы обладают различными активностями, в том числе
и экзонуклеазной в направлении 3' - 5', что позволяет им
исправлять - репарировать, дефекты, допущенные при подборе
комплементарных оснований. ДНК-полимераза 1 E. coli способна
инициировать репликацию в месте разрыва ДНК и замещать гомо-
логичный участок в двойной цепи ДНК. Это свойство использу-
ется для введения в ДНК меченых нуклеотидов методом
ник-трансляции.
Открытие бактериальных ферментов, обладающих эндонукле-
азной активностью - рестрикционных эндонуклеаз или рестрик-
таз, значительно продвинуло исследование структуры ДНК и
возможности генноинженерного манипулирования с молекулами
ДНК. In vivo эти ферменты участвуют в системе распознования
и защиты "своих" и уничтожении чужеродных ДНК. Рестриктазы
узнают специфические последовательности из 4 - 6, реже 8 -
12 нуклеотидов в двухцепочечной молекуле ДНК и разрезают ее
на фрагменты в местах локализации этих последовательностей,
называемых сайтами рестрикции. Количество образующихся рест-
рикционных фрагментов ДНК определяется частотой встречаемос-
ти сайтов рестрикции, а их размер - характером распределения
этих сайтов по длине исходной молекулы ДНК. Чем чаще распо-
ложены сайты рестрикции, тем короче фрагменты ДНК после
рестрикции. В настоящее время известно более 500 различных
типов рестриктаз бактериального происхождения, причем каждый
из этих ферметов узнает свою специфическую последователь-
ность. Рестриктазы выделяют путем биохимической очистки из
различных видов бактерий и обозначают тремя буквами, соот-
ветствующими первым трем буквам латинского названия вида
бактерий, и римской цифрой, соответствующей хронологии отк-
рытия этого фермента у данного вида бактерий. В зависимости
от частоты встречаемости сайтов рестрикции в молекуле ДНК
различают три класса рестриктаз часто-, средне- и редкощепя-
щие. Естественно, что рестриктазы, узнающие длинные специфи-
ческие последовательности (8-12 п.о.), как правило, являются
редкощепящими (например Nor1), а узнающие короткие (4-5
п.о.) - частощепящими (Taq1, EcoR1).
Сайты рестрикции могут быть использованы в качестве
генетических маркеров ДНК. Действительно, образующиеся в ре-
зультатае рестрикции фрагменты ДНК могут быть упорядочены по
длине путем электрофореза в агарозном или полиакриломидном
геле, и тем самым может быть определена их молекулярная мас-
са, а, значит, и физическое расстояние между сайтами. Напом-
ним, что обычным методом выявления ДНК в геле, также как и
РНК, является ее специфическое окрашивание, чаще всего эти-
диумом бромидом, и просмотр геля в проходящем ультрофиолете.
При этих условиях места локализации ДНК имеют красную окрас-
ку. При использовании для рестрикции нескольких эндонуклеаз
с последующим электрофоретическим анализом перекрывающихся
аддитивных по длине фрагментов ДНК можно добиться полного
упорядочивания сайтов узнавания для каждого из ферментов от-
носительно друг друга и каких-то иных маркеров, присутствую-
щих в исследуемой молекуле ДНК. Процесс этот называется фи-
зическим картированием и является обязательным элементом
анализа плазмидных, вирусных, бактериальных ДНК и относи-
тельно небольших фрагментов ДНК эукариот. На рис.1.2. предс-
тавлен простейший пример такого картирования в том случае,
когда в исследуемой молекуле ДНК присутствует по одному сай-
ту рестрикции для двух эндонуклеаз. После обработки исходной
ДНК отдельно каждой из рестриктаз образуется два фрагмента,
соответствующих по длине расстоянию от концов молекулы ДНК
до сайтов рестрикции. При совместной обработке обеими эндо-
нуклеазами на электрофореграмме появляется новый фрагмент,
размер которого соответствует расстоянию между сайтами рест-
рикции. Очевидно, что эти данные еще не позволяют однозначно
определить положение сайтов рестрикции по отношению к концам
молекулы ДНК. Однако, достаточно знать расположение хотя бы
одного маркера для того, чтобы произвести точное физическое















