methodrimana (675894), страница 2

Файл №675894 methodrimana (Построение решения задачи Гурса для телеграфного уравнения методом Римана) 2 страницаmethodrimana (675894) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Таким чином, для найпростішого рівняння, яке не містить перших похідних та шукаємої функції, розв’язок представляється у явному аналітичному вигляді (4.2). З формули (4.2) безпосередньо слідує єдиність та існування розв’язку поставленої задачі.

Перейдемо до розв’язку лінійного рівняння гіперболічного типу

(4.3)

при додаткових умовах на характеристиках x = 0, t = 0

u(x, 0) = (x),

u(0, t) = (t), (4.4)

де (x) та (t) задовільнюють вимогам диференцюємості та спряження. Коефіцієнти a, b та c будемо вважати неперервними функціями x та t.

Формула (4.3) показує, що функція u(x, t) задовільнює інтегро-диференційному рівнянню

(4.5)

Для доведення існування та єдиності розв’язку рівняння (4.5) скористаємось методом послідовних наближень. Виберемо в якості нульового наближення функцію

u(x, t) = 0.

Тоді (4.5) дає для послідовних наближень слідуючі вирази:

(4.6)

Зауважимо, що

(4.7)

Доведемо рівномірну збіжність послідовностей

{un(x, t)}, , .

Для цього розглянемо різниці

Нехай М – верхня межа абсолютних величин коефіцієнтів a(x, t),

b(x, t), c(x, t) та H – верхня межа абсолютних величин z0 = u1(x, t) та її похідних

|z0| < H,

при зміні x та t всередині деякого квадрату (0  x  L, 0  t  L). Побудуємо мажорантні оцінки для функцій Очевидно, що

Припустимо, що мають місце рекурентні оцінки

де К > 0 – деяке стале число, значення якого наведемо нижче. Користуючись ціми оцінками та формулою для (n+1)-го наближення після деяких спрощінь, які посилюють нерівність, маємо:

де

K = L + 2.

В правих частинах цих нерівностей з точністю до множників пропорційності стоять загальні члени розкладання функції е2KLM. Ці оцінки показують, що послідовності функцій

збігаються рівномірно до граничних функцій, котрі ми зазначимо

Переходячи до границі під знаком інтегралу у формулах (4.6) та (4.7), будемо мати:

Звідси випливають рівності

,

які дозволяють встановити, що функція u(x, t) задовільнює інтегро-диференційному рівнянню

(4.5)

а також диференційному рівнянню (4.3), що перевіряється безпосереднім диференціюванням рівняння (4.5) по x та по t. Функція

задовільнює також додатковим умовам.

Доведемо тепер єдиність розв’язку задачі (4.3)-(4.4). Припустимо існування двох розв’язків u1(x, t) та u2(x, t). Отримуємо для їх різниці

U(x, t) = u1(x, t) – u2(x, t)

однорідне інтегро-диференційне рівняння

Позначаючи далі через H1 верхню межу абсолютних величин

, ,

для 0  x  L, 0  t  L та повторюючи оцінки, які було проведено для функцій zn(x, t), переконуємось у справедливості нерівності

для будь-якого значення n. Звідси і випливає

U(x, t)  0 або u1(x, t)  u2(x, t),

що і доводить єдиність розв’язку задачі Гурса.

§5. Спряжені диференційні оператори.

Розглянемо лінійний диференційний оператор 2-го порядку

,

де Aij, Bi и C є двічі диференцюємими функціями x1,x2,…,xn.

Назвем оператор

спряженим з оператором Lu.

Якщо оператор L співпадає з спряженим йому оператором M, то такий оператор називають самоспряженим.

Розглянемо різницю

.

При отриманні цього виразу ми додали суму

,

але вона дорівнює нулю, так що значення виразу не змінилося.

Одже, вираз vLu – uMv являє собою суму частинних похідних по xi від деяких виразів Pi, тобто

,

де

.

Розглянемо тепер деякий n-мірний об’єм , який обмежений кусочно-гладкою поверхнею S.

Користуючись формулою Остроградського-Гауса (3.2), будемо мати

, (5.1)

де cos(nx1), cos(nx2),… - направляючі косінуси внутрешньої нормалі до S.

Формула (5.1) носить назву формули Гріна.

Розглянемо рівняння (1.1). Оператори Lu, Mv, а також функції P1 та P2 будуть мати вигляд:

При цьому формула Гріна дає (нормаль внутрішня)

(5.2)

§6. Побудова розв’язку.

Будувати розв’язок будемо методом Рімана, який полягає на використовуванні формули Гріна та дає рішення задачі (1.1) через граничні умови (1.2).

Нехай нам потрібно знайти значення функції u у деякій точці М області (x > x0, t > t0 ) з координатами (x1, t1).

Проведемо через точку М (рис. 2) з координатами (x1, t1) дві прямі, які паралельні координатним осям. Нехай точка P(x0, t1) – це точка перети-ну прямих x = x0 та t = t1, а точка Q(x1, t0) – точка перетину прямих

x = x1 та t = t0. Прямі х = х0, х = х1, t = t0, t = t1 як було показано раніше, є характеристиками рівняння (1.1). Область  буде являти собою прямокутник MPRQ. У цій області ми можемо застосувати метод Рімана для знаходження розв’язку.

Якщо враховувати, що обіг області  відбувається проти годинни-кової стрілки, так що обігаєма площа завжди залишається зліва, формулу (5.2) можна записати у вигляді

(5.2’)

З рисунку 2 бачимо, що при цьому

dx = cos(nt)dS,

dt = - cos(nx)dS.

За умови u(x0, t) = (t) отримуємо:

= 0; = ’(t).

За умови u(x, t0) = (x), отримуємо:

= 0; = ’(x).


Рис. 2

Якщо застосувати формулу (5.2’) до прямокутника MPRQ, враховуючи, що на характеристиках QM та PR змінюється лише t, а на характерис-тиках MP та RQ змінюється лише x ,будемо мати:

(6.1)

Перетворимо кожен з інтегралів, який стоїть у правій частині (6.1):

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

Нехай тепер v(x, t, x1, t1) – деяка функція, яка задовільнює умовам:

Mv = 0, (6.4)

, .

При цьому

v(x1, t1, x1, t1) = 1,

(6.5)

Розв’язок v(x, t, x1, t1) однорідного спряженого рівняння (6.4), який задовільнює умовам (6.5), називається функцією Рімана. Ця функція не залежить від початкових даних (1.2), та для неї точка (x, t) грає роль аргументу, а точка (x1, t1) – роль параметру. Існування та єдиність такої функції v було доказано методом послідовних наближень.

Оскільки на прямій MP t = t1, а на прямій QM x = x1, то останні члени у формулах (6.2.1) та (6.2.2) обертаються в нуль, і ми отримаємо:

.

Формулу (6.1) тепер можна записати у вигляді:

Приводячи подібні, та враховуючи, що v(x1, t1, x1, t1) = 1, u(x0,t) = (t), u(x, t0) = (x) та ; = ’(x), маємо:

Звідки знаходимо розв’язок нашої задачі

(6.6)

Як ми бачимо, формула (6.6) дозволяє у явному вигляді написати розв’язок данної задачі, оскільки точку М(x1, t1) ми вибрали довільно.

§7. Деякі приклади на знаходження фунції Рімана.

Приклад 1.

Знайдемо функцію Рімана для рівняння

. (7.1)

Зробивши заміну змінних

рівняння (7.1) приводиться до канонічного вигляду

при цьому будемо мати a = 0, b = -.

Звернемося тепер до відшукання фунції Рімана v(, , 1, 1). Згідно загальної теорії, вона повинна задовольняти спряженому рівнянню

(7.2)

та умовам на характеристиках, які проходять через точку (1, 1):

(7.3)

неважко вконатися, що функція

задовільнює як рівнянню (7.2), так і умовам (7.3), слід, це і є шукана функція Рімана.

Приклад 2.

Знайдемо функцію Рімана для рівняння

(x > 0) (7.4)

приведемо рівняння (7.4) до канонічного вигляду, для чого складемо рівняння характерстик

xdt2 – dx2 = 0

це рівняння має два різних інтеграла

+ = C1, - = C1,

слід, треба ввести нові змінні  та  за формулами

 = + ,  = - (x >0)

приєднаємо до цих рівностей ще одну залежність

тоді рівняння (7.4) перетвориться до канонічного вигляду:

при цьому будемо мати a = 0, b = 0.

Для відшукання функії Рімана нам потрібно знайти частинний розв’язок спряженого рівняння

(7.5)

який задовольняв би слідуючим умовам на характеристиках, проведених через точку (1, 1)

(7.6)

Будемо шукати розв’язок рівняння (7.1) у вигляді v = G(), де

 =.

Тоді для G() ми отримаємо слідуюче рівняння:

(1-)G’’() + (1-2)G’() - G() = 0

Це рівняння частинним випадком гіпер геометрічного рівняння Гаусса

(1-)y’’ + [ - (1 +  + )]y’ - y = 0

при  =  = ,  = 1.

Рівняння Гаусса припускає частинний розв’язок у вигляді гіпергеометрічного ряду

який збігається абсолютно при || < 1.

Звідки ясно, що взявши

v = G() = F = 1 +

ми задовільним рівнянню (7.5) та усмовам (7.6). Слід, функція

і є функцією Рімана.

Приклад 3.

Знайдемо функцію Рімана для телеграфного рівняння

якщо ввести нову функцію u(x, t) поклавши

(7.7)

то рівняння (7.7) більш просту форму

, (7.8)

де a = , b = .

За допомогою заміни змінних

 = (x + at),  = (x - at)

приведемо рівняння (7.8) до канонічного вигляду

при цьому маємо a = b = 0.

Функція Рімана повинна задовільнювати спряженому рівнянню

, (7.9)

Характеристики

Тип файла
Документ
Размер
338 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее