ref-17200 (675883)
Текст из файла
8
Общий исторический обзор
Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную посуду и натягивать тетиву на лук. Конечно, десятки и сотни тысяч раз натягивали люди свои луки изготовляли разные предметы с прямыми ребрами и т. п., пока постепенно дошли до отвлеченного понятия прямой линии. Примерно то же можно сказать о других основных геометрических понятиях. Практическая деятельность человека служила основой длительного процесса выработки отвлеченных понятий, открытия простейших геометрических зависимостей и соотношений.
Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилось потребность обобщения, уяснения зависимости одних элементов от других, установления логических связей и доказательств. Постепенно создавалась геометрическая наука. Примерно в VI - V вв. до н. э. в Древней Греции в геометрии начался новый этап развития, что объясняется высоким уровнем, которого достигла общественно-политическая и культурная жизнь в греческих государствах. Произведения, содержащие систематическое изложение геометрии, появились в Греции еще в V до н.э., но они были вытеснены “Началами” Евклида.
Геометрические знания примерно в объеме современного курса средней школы были изложены еще 2200 лет назад в “Началах” Евклида. Конечно, изложенная в “Началах” наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ, Архит, Теэтет, Евдокс и др. Ценой больших усилий, исходя из отдельных геометрических сведений, накопленных тысячелетиями в практической деятельности людей, эти великие ученые сумели на протяжении 3 - 4 столетий привести геометрическую науку к высокой ступени совершенства. Историческая заслуга Евклида состоит в том, что он, создавая свои “Начала”, объединил результаты своих предшественников, упорядочил и привел в одну систему основные геометрические знания того времени. На протяжении двух тысячелетий геометрия изучалась в том объеме, порядке и стиле, как она была изложена в “Началах” Евклида. Многие учебники элементарной геометрии во всем мире представляли (а многие и поныне представляют) собой лишь переработку книги Евклида. “Начала” на протяжении веков были настольной книгой величайших ученых.
В XVII в. Декарт благодаря методу координат сделал возможным изучение свойств геометрических фигур с помощью алгебры. С этого времени начала развиваться аналитическая геометрия. В XVII - XVIII вв. зарождается и разрабатывается дифференциальная геометрия, изучающая свойства фигур с помощью методов математического анализа. В XVIII- XIX вв. развитие военного дела и архитектуры привело к разработке методов точного изображения пространственных фигур на плоском чертеже, в связи с чем появляются начертательная геометрия, научные основы которой заложил французский математик Г. Монж, и проективная геометрия, основы которой были созданы в трудах французских математиков Д. Дезарга и Б. Паскаля (XVII в.). В ее создании важнейшую роль сыграл другой французский математик - Ж. В. Понселе (XIX в.).
Коренной перелом в геометрии впервые произвел в первой половине ХIХ в. великий русский математик Николай Иванович Лобачевский, который создал новую, неевклидову геометрию, называемую ныне геометрией Лобачевского.
Открытие Лобачевского было началом нового периода в развитии геометрии. За ним последовали новые открытия немецкого математика Б. Римана и др.
В настоящее время геометрия тесно переплетается со многими другими разделами математики. Одним из источников развития и образования новых понятий в геометрии, как и в других областях математики, являются современные задачи естествознания, физики и техники.
Первоначальное понятие о многогранниках.
Многогранники и их элементы.
Проблемы нам создают не те вещи,
которых мы не знаем, а те, о которых мы
ошибочно полагаем, что знаем.
В. Роджерс
Определение. Многогранником называется тело, поверхность которого является объединением конечного числа многоугольников. В соответствии с общим определением выпуклого множества, многогранник является выпуклым1, если вместе с любыми двумя своими точками он содержит соединяющий их отрезок. На рисунке показаны выпуклый и, соответственно, невыпуклый многогранники. | ||||
Многоугольник, принадлежащий поверхности многогранника, называется его гранью, если он не содержится ни в каком другом многоугольнике, также принадлежащем поверхности многогранника. Стороны граней называются рёбрами многогранника, а вершины – вершинами многогранника. Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, называются диагоналями этого многогранника. | ||||
Определение. Многогранник называется правильным, если все его грани – равные правильные многоугольники и из каждой его вершины выходит одинаковое число рёбер. | ||||
Грани | Вершины | Рёбра | ||
Тетраэдр | 4 | 4 | 6 | |
Куб | 6 | 8 | 12 | |
Октаэдр | 8 | 6 | 12 | |
Додекаэдр | 12 | 20 | 30 | |
Икосаэдр | 20 | 12 | 30 | |
Призма n-угольная | 2n | 3n | n+2 | |
Пирамида n-угольная | n+1 | 2n | n+1 | |
Теорема Эйлера. | Для числа граней Г, числа вершин В и числа рёбер Р любого выпуклого многогранника справедливо соотношение: Г+В – Р=2 | |||
Принцип Кавальери: | Если два тела могут быть расположены так, что любая плоскость, параллельная какой-нибудь данной плоскости и пересекающая оба тела, даёт в сечении с ними равновеликие фигуры, то объёмы таких тел равны. |
Призма.
Определение. Призма – многогранник, составленный из двух равных многоугольников A1A2…An и B1B2…Bn, расположенных в параллельных плоскостях, и n параллелограммов. | |
Два равных многоугольника, лежащие в параллельных плоскостях, называются основаниями призмы (A1A2…An и B1B2…Bn). | |
Остальные грани призмы, являющиеся параллелограммами, называются её боковыми гранями (AnA1B1Bn) | |
Рёбра, не лежащие в основании призмы, называются боковыми рёбрами (A1B1; A2B2 … AnBn) | |
Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы (h). | |
Диагональная плоскость – плоскость, проходящая через диагональ основания и боковое ребро призмы. | |
Диагональное сечение – фигура, полученная при пересечении диагональной плоскости с поверхностью призмы. | |
Перпендикулярное сечение – сечение призмы плоскостью, перпендикулярной её боковым рёбрам. | |
В призму можно вписать сферу тогда и только тогда, если в перпендикулярное сечение призмы можно вписать окружность, диаметр которой равен высоте призмы. | |
Если боковые рёбра призмы перпендикулярны к основаниям, то есть если основания служат нормальными сечениями боковой поверхности, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна её боковому ребру. Плоские углы основания являются плоскими углами двугранных углов между боковыми гранями. | |
Прямая призма называется правильной, если её основания – правильные многоугольники. У такой призмы все боковые грани – равные многоугольники. В правильную призму можно вписать сферу тогда и только тогда, когда её высота равна диметру окружности, вписанной в основание. | |
Площадь боковой поверхности призмы – это сумма площадей всех её боковых граней. | Sбок=Рп*/g/, где Рп – периметр перпендикулярного сечения, /g/ - длина бокового ребра |
Площадь полной поверхности призмы – сумма площадей всех её граней | Sполн=Sбок+2Sосн |
Объём призмы. Объёмом геометрического тела называется величина части пространства, занимаемого этим телом. Доп. справка: в геометрии принято:
| V=Sосн*h |
Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. | Sбок=Pосн*h |
Частным случаем призмы является параллелепипед – призма, основанием которой служат параллелограммы. | |
Основные свойства параллелепипеда: |
|
Если все грани параллелепипеда являются прямоугольниками, то параллелепипед называется прямоугольным. В нём все диагонали равны между собой. Если боковые рёбра параллелепипеда перпендикулярны основанию, то параллелепипед является прямым. Куб также является частным случаем призмы. Куб есть прямоугольный параллелепипед с равными рёбрами. | |
Объём параллелепипеда | V=S*h |
Объём прямоугольного параллелепипеда | V=abc |
Объём куба | V =a3 |
Диагональ прямоугольного параллелепипеда | d2=a2+b2+c2, где d – диагональ, a,b,c – рёбра |
Пирамида.
Слово «пирамида» в геометрию ввели греки,
которые, как полагают, заимствовали его
у египтян, создавших самые знаменитые
пирамиды в мире. Другая теория выводит
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.