Diplur3 (675878)

Файл №675878 Diplur3 (Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области)Diplur3 (675878)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Прусаков Д. В.

«Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области» 1998- 99 уч. г. 13

Введение

1.Постановка задачи

2. Оценочный анализ решения задачи.

2.1. Оценка решения сверху.

2.2. Оценка решения в виде интеграла

2.3. Выбор интервала ( ) и оценка погрешности

3. Формулировка результата в виде теоремы

4. Примеры

Заключение

СПИСОК ЛИТЕРАТУРЫ



Введение

В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.

1.Постановка задачи



В дипломной работе рассматривается задача:

(З)

0 .

t

x

Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при

2. Оценочный анализ решения задачи.

Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности : «Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах» [2].

2.1. Оценка решения сверху.

В области t=t , x= рассмотрим решение задачи :

, V(0,x) = ( x ), x , (1)

это решение имеет вид [1]:

v (t, x) = . (2)

Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так:

V(t, x) = (2’)

Из принципа максимума [2] заключаем, что:

U( t, x ) V( t, x ). (3)

Таким образом задача сводится к оценке интеграла (2).

2.2. Оценка решения в виде интеграла

Разобьем интервал < x на две части и , тогда интеграл (2) запишется в виде:

V( t, x ) = . (*)

Исследуем знак подинтегрального выражения, принимая во внимание, то что :

; (а)

;

;

где .

После проведенного исследования видно, что

Использовав известное разложение ,

где Z 0, , заменим экспоненты во втором интеграле рядами:

(а) ;

(б) .

В результате получим :

Здесь:

, , (4.1)

, . (4.2)

Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда:

m=1,

U(t, x) . (5)

Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к . фиксированно)

Рассмотрим другую возможность оценки неравенства (3).

пусть

(т.е. финитна), в соответствии с принципом максимума:

, (3)

при

где W- решение краевой задачи (З) с начальными условиями:

Аналогично, как и выше

здесь:

Таким образом,

(используем разложение в ряд Тейлора)

В итоге,

(5.1)

Рассмотрим два случая:

а) Пусть

,

тогда в правой части неравенства (5.1) третье и четвертое (3,4) слагаемые стремятся к нулю быстрее любой степени ,

поэтому (5.1) можно переписать как:

(5.2)

б) Пусть тогда:

где

В результате получаем:

(5.3)

2.3. Выбор интервала ( ) и оценка погрешности

Зададим произвольно некоторую константу >0, потребовав чтобы в (5)

< .

при .

Неравенство (5) можно только усилить, если

< (6)

Рассмотрим общий вид :

; (7)

, (7.1)

b=x ( k=1 ) , b=2 (k=2) оценка (7.1) эквивалентна системе неравенств:

,

откуда:

. (8)

Т. к. в работе исследуется поведение неравенства (3) при то принимаем что для некоторого :

. (9)

3. Формулировка результата в виде теоремы

Обобщая результаты всей работы в целом можно сформулировать следующие теоремы:

1. Пусть для уравнения теплопроводности имеет место задача

(З)

- гладкая, непрерывно - дифференцируемая функция на ,а функция ограничена на R : .

Тогда для любого сколь малого числа можно указать число

,

такое что имеет место следующая оценка «сверху» решения задачи (З):

Раскрыв квадратные скобки, получим:

.

  1. Пусть в имеет место задача (З), - монотонная, неограниченная, возрастающая функция, тогда:

  2. если , то

2) если то

Замечанние:видно, что оценку полученную в теореме 2 можно получить и при более слабых ограничениях

4. Примеры

Пусть ,

  1. .

Заключение

В дипломной работе произведена оценка решения «сверху» для уравнения теплопроводности с движущей границей по заданному закону. Аналогично, можно получить оценку решения «снизу». Для этого нужно рассмотреть ступенчатую область, в которой для каждой ступеньки решение может быть получено согласно 2.1 (2) . Число таких ступенчатых областей необходимо выбрать таким образом, чтобы оценка полученная снизу была сравнима с полученной выше оценкой.

СПИСОК ЛИТЕРАТУРЫ
  1. А. Н. Тихонов, А. А. Самарский, Уравнения математической физики. Изд. «Наука», М. 1966 (с. 230 -233);

  2. С. К. Годунов, Уравнения математической физики. Изд. «Наука», М. 1973 . 33-34);

  3. Л. Д. Кудрявцев, Краткий курс математического анализа. Изд. «Наука», М. 1989.




Характеристики

Тип файла
Документ
Размер
327 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее