Mine version (675865), страница 2

Файл №675865 Mine version (Определение законов распределения случайных величин и их числовых характеристик на основе опытных данных. Проверка статистических гипотез) 2 страницаMine version (675865) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Величина :

Величина :

Сгруппировав элементы получим статистический ряд распределения случайной величины

пр-ка

Границы промежутка

Середина промежутка

Количество элементов выборки в промежутке

Частота для промежутка

1

-8 ; 0

-4

4

0.0333

2

-0 ; 8

4

15

0.1250

3

8 ; 16

12

19

0.1583

4

16 ; 24

20

25

0.2083

5

24 ; 32

28

24

0.2000

6

32 ; 40

36

17

0.1417

7

40 ; 48

44

8

0.0667

8

48 ; 56

52

8

0.0667

Сгруппировав элементы получим статистический ряд распределения случайной величины

№ пр-ка

Границы промежутка

Середина промежутка

Количество элементов выборки в промежутке

Частота для промежутка

1

0; 9

4,5

7

0.1167

2

9 ; 18

13,5

16

0.2667

3

18 ; 27

22,5

19

0.3167

4

27 ; 36

31,5

6

0.1000

5

36 ; 45

40,5

6

0.1000

6

45 ; 54

49,5

5

0.0833

7

54 ; 63

58,5

1

0.0167

  1. Построить гистограммы распределения случайных величин и .

Гистограммы распределения приведены на графиках с теоретическими функциями распределения.

  1. Найти выборочное среднее , и исправленные выборочные среднеквадратические отклонения: , случайных величин и .

Выборочное среднее случайной величины равно

Выборочное среднее случайно величины равно

Найдем исправленное среднеквадратическое отклонение случайной величины :

=14.3632

Найдем исправленное среднеквадратическое отклонение случайной величины :

=13.5727

  1. Проверить, используя метод гипотезу о нормальном распределении, каждой из случайных величин и при уровне значимости .

Проверим гипотезу о нормальном распределении случайной величины .

Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле

, где - объем выборки, - шаг (разность между двумя соседними вариантами, ,

Построим вспомогательную таблицу:

1

4

-1.9169

4.2461

0.0606

0.014

2

15

-1.3600

10.5760

19.572

1.850

3

19

-0.8030

19.3161

0.0999

0.005

4

25

-0.2460

25.8695

0.7561

0.0292

5

24

0.3110

25.4056

1.9757

0.0778

6

17

0.8680

18.2954

1.6780

0.0917

7

8

1.4249

9.6610

2.7590

0.2856

8

8

1.9819

3.7409

18.139

4.8491

В итоге получим = 7,2035

По таблице критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим

Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .

Для случайной величины :

Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле

, где - объем выборки, - шаг (разность между двумя соседними вариантами, ,

1

7

-1.4036

5.9274

1.1504

0.1941

2

16

-0.7405

12.0665

15.4725

1.2823

3

19

-0.0774

15.8248

10.0820

0.6371

4

6

0.5857

13.3702

54.3197

4.0627

5

6

1.2488

7.2775

1.6319

0.2242

6

5

1.9119

2.5519

5.9932

2.3485

7

1

2.5750

0.5765

0.1794

0.3111

В итоге получим = 8.1783

По таблице критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 7 - 3=4 находим

Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .

  1. Построить график функции плотности распределения случайной величины в одной системе координат с гистограммой.( взяв в качестве математического ожидания и дисперсии их статистические оценки и ) и вычислив значение функции в точках: , , а также в точке левее первого и правее правого промежутка группировки.



  1. Выполнить задание 6 для случайной величины .



  1. Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин и , соответствующие доверительной вероятности .

Найдем доверительный интервал для математического ожидания :

Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:

Найдем по таблицам ([2], стр. 391). По =0,95 и =120 находим: =1,980. Тогда требуемый доверительный интервал примет вид:

То есть: (20,93721;26,12946).

Найдем доверительный интервал для математического ожидания :

Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:

Найдем по таблицам ([2], стр. 391). По =0,95 и =60 находим: =2,001. Тогда требуемый доверительный интервал примет вид:

То есть: (20,043;27,056).

Известно, что если математическое ожидание неизвестно, то доверительный интервал для дисперсии при доверительной вероятности имеет вид

Для случайной величины найдем:

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее