kursovik (675864)
Текст из файла
2
Белорусский государственный университет
Факультет прикладной математики и информатики
Кафедра математической физики
ГРОМОВА МАРИЯ МИХАЙЛОВНА
ОПРЕАТОРЫ В ВЕЙВЛЕТНОМ БАЗИСЕ
Курсовая работа студентки 4 курса
Научный руководитель:
Глушцов Анатолий Ильич
кафедры МФ
кандидат физ.-мат. наук
Минск 2004
СОДЕРЖАНИЕ
ВВЕДЕНИЕ………..………………………………………………………..3
-
МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ………………...5
-
БЫСТРОЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЕ….……………………...9
-
ДВУМЕРНЫЕ ВЕЙВЛЕТЫ…………………………………………..12
-
МАТРИЧНЫЕ ОПЕРАЦИИ………………………………………….13
4.1. Матричное умножение………………………………………...13
4.2. Обращение матрицы…………………………………………...16
4.3. Вычисление экспоненты, синуса и косинуса от матрицы.….16
ЛИТЕРАТУРА……………………………………………………………18
ВВЕДЕНИЕ
Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.
Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.
Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.
Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.
При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.
В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Морли назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.
Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.
1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ
Определение 1. Многомасштабный анализ (multiresolutional analysis) – разложение гильбертова пространства L2(Rd), d1, в последовательность замкнутых подпространств
обладающих следующими свойствами:
2. Для любого f L2(Rd), для любого j Z, f(x)Vj тогда и только тогда, когда
f(2x) Vj-1,
3. Для любого f L2(Rd), для любого k Zd, f(x)V0 тогда и только тогда, когда f(x-k)V0,
4. Существует масштабирующая (scaling) функция V0, что {(x-k)}kZd образует
базис Ритца в V0.
Для ортонормальных базисов можно переписать свойство 4 в виде:
4’. Существует масштабирующая функция V0, что {(x-k)}kZd образует ортонормальный базис в V0.
Определим подпространство Wj как ортогональное дополнение к Vj в Vj-1,
и представим пространство L2(Rd) в виде прямой суммы
Выбирая масштаб n, можем заменить последовательность (1.1) следующей последовательностью:
и получить
Если имеем конечное число масштабов, то, не нарушая общности, можно положить j=0 и рассматривать
вместо (1.4). В числовой реализации подпространство V0 конечномерно.
Функция - так называемая масштабирующая (скейлинг-) функция. С ее помощью можно определить функцию - вейвлет - такую, что набор {(x-k)}kZ образует ортонормальный базис в W0. Тогда
Из свойства 4’ непосредственно следует, что, во-первых, функция может быть представлена в виде линейной комбинации базисных функций пространства V-1 . Так как функции {j,k(x)=2-j/2(2-jx-k)}kZ образуют ортонормальный базис в Vj, то имеем
Вообще говоря, сумма в выражении (1.8) не обязана быть конечной. Можно переписать (1.8) в виде
где
а 2-периодическая функция m0 определяется следующим образом:
Во-вторых, ортогональность {(x-k)}kZ подразумевает, что
и значит
Используя (1.9), получаем
и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем
Используя 2-периодичность функции m0 и (1.14), после замены /2 на , получаем необходимое условие
для коэффициентов hk в (1.11). Заметив, что
и определив функцию следующим образом:
где
или преобразование Фурье для
где
можно показать, что при каждом фиксированном масштабе jZ вейвлеты
{j,k(x)=2-j/2(2-jx-k)}kZ образуют ортонормальный базис пространства Wj.
Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, где и
. Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.
Выбранный фильтр Н полностью определяет функции и и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций и почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связанные с и .
4. ОПЕРАТОРЫ
Сжатие операторов или, другими словами, представление их в разреженном виде в ортонормированном базисе непосредственно влияет на скорость вычислительных алгоритмов.
Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений:
4.1 Оператор d/dx в вейвлетном базисе
Нестандартные формы некоторых часто используемых операторов могут быть вычислены явно. Построим нестандартную форму оператора d/dx. Матричные элементы ,
,
матриц
,
,
и
матрицы
, где i, l, j Z для оператора d/dx легко вычисляются как
где
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.