84265 (675677), страница 3
Текст из файла (страница 3)
а
б
авна расстоянию между нашими скрещивающимися прямыми. В Рис. 15
α
a
b¹
A
место того чтобы вычислять расстояния и углы в пространстве, часто можно находить соответствующие величины на ортогональной проекции данной фигуры. На рис. 15 показаны .те интересные ортогональные проекции куба '„' ребром длины и: прямоугольник размером а * а√2 (проекция на диагональную плоскость АСС¹А¹ или, что то же, вдоль диагонали BD основания): и правильный шестиугольник со стороной а√2/3 (проекция вдоль диагонали куба АС¹; мы видели, что прямая АС¹ перпендикулярна плоскости BDA¹, а потому правильный треугольник BDA, со стороной а√2 в такой проекции не искажается). С помощью первой проекции можно найти, например, угол между плоскостями BDA¹ и BDC¹ — он равен углу между красными прямыми, в которые проектируются эти плоскости. А расстояние r между двумя скрещивающимися диагоналями граней BD и В¹С равно расстоянию на рис. 16, а от точки В до прямой В¹С (В и B¹C — изображения первой и второй диагоналей соответственно). Подумайте почему. (Здесь важно, что общий перпендикуляр диагоналей параллелен плоскости проекции.) Легко найти, что r= а/√3. Нетрудно вычислить на той же проекции и расстояние между прямыми BD и АС¹ Ещё проще найти его с помощью рис. 16, б, на котором АС¹ превращается в точку: расстояние от последней — центра шестиугольника — до BD равно половине стороны шестиугольника, т. е. а/√6.
О
A¹
C
C¹
A
B(=D)
B¹(=D¹)
r
а















A(=C¹)
D
C
D¹
A¹
B
B¹
б
Рис. 16
тметим интересное соотношение, связывающее площадь фигуры, площадь её проекции и угол между плоскостями:-
Площадь Sпр ортогональной проекцией многоугольника равна площади S многоугольника, умноженной на cos φ, где φ- угол между его плоскостью и плоскостью проекции:
h
φ

Рис. 17
Это очевидно для треугольника, одна из сторон которого совпадает с линией пересечения двух плоскостей (рис. 17) или параллельна ей. А любой многоугольник можно разбить на такие треугольники. Приближая криволинейные фигуры многоу-гольниками, получим, что формула площади проекции справедлива и для них.
V. Несколько задач на построение, вооброжение, изображение и соображение.
ЗАДАЧА 1.
П
Рис. 18
о правилам черчения принято изображать пунктиром ребра многоугольника, расположенные на его обратной стороне. Некоторый многоугольник спереди и сверху выглядит одинаково, как показано на рис 18. Пунктиров на изображении нет- значит нет и невидимых ребер. Как предмет выглядит сбоку?ЗАДАЧА 2.
М
A
C
B
Рис. 19
F
D








?
Рис. 20
E
ожет ли рисунок 19 служить изображением многогранника с тремя четырехугольными гранями и двумя треугольными?ЗАДАЧА 3.
На рисунке 20 изображена треугольная пирамида, в которой проведены два отрезка, соединяющие точку на противоположных ребрах. Можно ли по рисунку определить, пересекаются эти отрезки в пространстве или нет? А если можно, то как?
ОТВЕТЫ.
1
.
2. Нет. Прямые AD, BE, CF должны пересекаться в одной точке.
3
?





0