84236 (675632), страница 2

Файл №675632 84236 (Асимптотические методы исследования нестационарных режимов в сетях случайного доступа) 2 страница84236 (675632) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)






i


Рис. 1.1 – Модель системы массового обслуживания

Математическая модель исследуемого протокола множественного доступа построена, проведем ее анализ, получим аналитические выражения, определяющие зависимости для основных ее характеристик.

Для исследования процесса введем следующие обозначения

,

вероятность того, что в момент времени t прибор находится в состоянии k и в ИПВ находится i заявок.

Рассмотрим вероятности переходов из состояния системы в произвольный момент времени t в состояние за бесконечно малый интервал времени .

1. Пусть система находится в состоянии , то есть в ИПВ находится i заявок и прибор свободен, за интервал времени состояние системы может измениться таким образом (рис. 1.2):

а) с вероятностью из входящего потока требований поступит новая заявка, которая немедленно займет прибор и начнет обслуживание, тогда система в момент времени будет находиться в состоянии ;

б) с вероятностью к прибору обратится одна из i заявок, находящихся в ИПВ и система перейдет в состояние ;

в) с вероятностью состояние системы не изменится.

2. Пусть система в момент времени t находится в состоянии , то есть прибор занят обслуживанием заявки и в ИПВ находится i требований, за интервал времени возможны следующие переходы (рис. 1.3):

а) с вероятностью прибор успешно завершит обслуживание, и в момент времени система будет находиться в состоянии ;

б) с вероятностью в систему поступит новое требование из входящего потока и произойдет конфликт. Как вновь поступившая, так и заявка с прибора перейдут в ИПВ, и начнется интервал оповещения о конфликте, следовательно, система перейдет в состояние ;

в) с вероятностью к прибору обратится одна из заявок с ИПВ, произойдет конфликт, и обе заявки переместятся в ИПВ, следовательно, система в момент времени будет находиться в состоянии ;

г) с вероятностью состояние системы не изменится.

3. Пусть система в момент времени t находится в состоянии . Посмотрим, что произойдет через интервал времени длины (рис. 1.4):

а) с вероятностью к прибору обратится заявка из входящего потока, которая автоматически попадет в ИПВ. В момент времени система будет в состоянии ;

б) с вероятностью интервал оповещения о конфликте завершится, и система перейдет в состояние ;

в) с вероятностью состояние системы не изменится.

Все остальные вероятности переходов не превышают порядка малости .


Рис. 1.2 – Возможные переходы из состояния


Рис. 1.3 – Возможные переходы из состояния


Рис. 1.4 – Возможные переходы из состояния

Таким образом, можно записать систему конечно-разностных уравнений для вероятностей состояний системы:

следовательно, в нестационарном режиме, эти вероятности удовлетворяют системе дифференциально-разностных уравнений

,

, (1.1)

,

где ,

решить которую практически невозможно, но можно решить асимптотически в условиях «большой загрузки», т.е. при , , где пропускная способность исследуемой сети связи (верхняя граница множества тех значений загрузки , для которых в системе существует стационарный режим).

Рассмотрим исходную систему уравнений (1.1) и произведем в ней замену переменных: , , , . В результате замены производится переход от дискретной переменной к непрерывной переменной . В новых обозначениях производная равна .

Тогда систему (1.1) перепишем

,

, (1.2)

Получим вид решения системы (1.2), которую будем решать в три этапа.

1 этап. В уравнениях (1.2) устремим и обозначим , заметим что, . Будем иметь

,

, (1.3)

.

Выразим через и получим

,

, (1.4)

.

где – асимптотическая плотность распределения вероятностей нормированного числа заявок в ИПВ.

Введем обозначения

(1.5)

( - это асимптотическая вероятность того, что обслуживающий прибор находится в состоянии k). Из системы (1.3) следуют равенства, связывающие , , и выглядят так

(1.6)

.

Найдем вид функции . Для этого перейдем ко второму этапу.

2 этап. Неизвестные функции будем искать с точностью до в следующем виде

, (1.7)

Определим вид функций , для этого в системе уравнений (1.2) разложим функции с аргументом в ряд по приращению аргумента (ограничиваясь двумя слагаемыми), будем иметь

,

, (1.8)

В полученные уравнения подставим в форме (1.7), заменим разностью , сумму на G и не учтем слагаемые, имеющие порядок . Получим

,

(1.9)

Теперь приведем подобные слагаемые, учтем равенства (1.6), и получим неоднородную линейную систему алгебраических уравнений для нахождения неизвестных функций такого вида

,

, (1.10)

Нетрудно заметить, что ранг матрицы однородной системы алгебраических уравнений, соответствующей (1.10) равен двум. Следовательно, для того, чтобы система была разрешима, необходимо, чтобы ранг расширенной матрицы этой системы был равен двум, т.е. чтобы выполнялось следующее равенство

. (1.11)

С учетом того, что

равенство (1.11) принимает вид

. (1.12)

Равенство нулю производной противоречит смыслу задачи, следовательно , т. е. пропускная способность исследуемой сети связи равна асимптотической вероятности того, что обслуживающий прибор «обслуживает», на рис. 1.5 продемонстрирован этот результат.


S

G

Рис. 1.5

Таким образом, мы выяснили, что система (1.10) разрешима. Ее решение можно записать так

,

- произвольная функция, (1.13)

.

Перейдем к третьему этапу.

3 этап. Запишем уравнения системы (1.2) с точностью до , получим

,

(1.14)

Как и на втором этапе в полученные уравнения подставим в форме (1.7), заменим разностью , сумму на G и не учтем слагаемые, имеющие порядок выше , получим

(1.15)

Просуммировав все уравнения системы (1.15), получим равенство для нахождения

(1.16)

Подставляя выражения для , найденные на втором этапе, для получим уравнение Фоккера-Планка

, (1.17)

где

Решим уравнение (1.17) с помощью преобразования Лапласа по x. Левую и правую части уравнения умножим на и проинтегрируем. С учетом обозначения и свойств этой функции уравнение (1.17) приобретет вид

(1.18)

Таким образом, мы перешли от уравнения Фоккера-Планка с постоянными коэффициентами к обыкновенному дифференциальному уравнению, решение которого с точностью до неизвестных , и записывается следующим образом

(1.19)

Для того чтобы получить окончательное решение уравнения (1.17) нужно провести дополнительное исследование, которое бы показало поведение исследуемого процесса в окрестности нуля. Используя асимптотику , это не удается сделать.

Предположим, что сеть связи функционирует в стационарном режиме, тогда (1.17) перепишется в виде

(1.20)

Следовательно, в стационарном режиме асимптотическое распределение вероятностей нормированного числа заявок в источнике повторных вызовов подчиняется экспоненциальному закону с параметром и имеет вид

(1.21)

2. Исследование неоднородной нестационарной сети случайного доступа с динамическим протоколом в условиях перегрузки

Р

ассмотрим сеть связи, описанную в разделе 1, в которой интенсивность входящего потока зависит от времени и равна , где Т – некоторый интервал времени, в течение которого функционирует сеть связи. Структура сети изображена на рис. 2.1.








i


Рис. 2.1 – Модель системы массового обслуживания

В нестационарном режиме распределение

удовлетворяют системе дифференциально-разностных уравнений вида

(2.1)

где , , , .

Замечание: система уравнений (2.1) получена аналогично системе уравнений (1.1). Вероятности переходов для состояний системы совпадают с точностью до замены .

Систему (2.1) будем решать в условиях перегрузки, то есть при .

Первое приближение

В системе уравнений (2.1) произведем замену переменных: . В результате такой замены производится переход от дискретной переменной к непрерывной переменной , от t перешли к , причем такое, что . После замены производная равна .

Тогда уравнения (2.1) перепишем

(2.2)

Решим систему уравнений (2.2) в два этапа.

1 этап. Считая и предполагая, что будем иметь

(2.3)

.

Выразим через функцию и получим

(2.4)

где асимптотическая плотность распределения нормированного числа заявок в источнике повторных вызовов.

Обозначим

(2.5)

( - это асимптотическая вероятность того, что обслуживающий прибор находится в состоянии k). Заметим, что из системы (2.3) следуют равенства связывающие , и

(2.6)

.

Найдем вид функции , для этого перейдем ко второму этапу.

2 этап. В системе дифференциальных уравнений (2.2) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим

(2.7)

Просуммируем левые и правые части уравнений системы (2.7) и получим равенство

Характеристики

Тип файла
Документ
Размер
2,1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6695
Авторов
на СтудИзбе
289
Средний доход
с одного платного файла
Обучение Подробнее