31054-1 (675610), страница 3

Файл №675610 31054-1 (Некоторые главы мат. анализа) 3 страница31054-1 (675610) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Суммой двух событий А и В называется событие С, состоящее в выполнении события А или события В, или обоих событий вместе.

Суммой нескольких событий называется событие, состоящее в выполнении хотя бы одного из этих событий.

Произведением двух событий А и В называется событие D, состоящее в совместном выполнении события А и события В.

Произведением нескольких событий называется событие, состоящее в совместном выполнении всех этих событий.

А к с и о м ы т е о р и и в е р о я т н о с т е й :

1. Вероятность любого события находится в пределах:

.

2. Если А и В несовместные события , то

3. Если имеется счетное множество несовместных событий А1, А2, ... Аn, ... при , то

Следствие: сумма вероятностей полной группы несовместных событий равна единице, т.е. если

; при

то

.

Сумма вероятностей противоположных событий ровна единице:

Правило умножения вероятностей: вероятность произведения (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого

.

Для независимых событий правило умножения принимает вид:

, или

Основываясь на теорию выведем некоторые формулы для решения поставленной задачи.

Схема состоит из нескольких n блоков (рис. 2.1), каждый из которых (независимо от других) может выйти из строя. Надежность каждого блока равна p. Безотказная работа всех без исключения блоков необходима для безотказной работы в целом. Найти вероятность безотказной работы всей схемы.

Рис. 2.1

Событие A={безотказная работа прибора} есть произведение n независимых событий А1, А2, ... Аn, где Ai={безотказная работа i -го блока}. По правилу умножения для независимых событий имеем

.

Схема состоит из 2 блоков (рис. 2.2), каждый из которых (независимо от друг от друга) может выйти из строя. Надежность каждого блока равна p. Найти вероятность безотказной работы всей системы.

Рис. 2.2

От события В={система будет работать} перейдем к противоположному: ={система не будет работать}. Для того чтобы система не работала, нужно, чтобы отказали оба блока. Событие есть произведение двух событий:

={блок 1 отказал}x{блок 2 отказал}.

По правилу умножения для независимых событий:

3 Практическая часть

Воспользовавшись выше изложенными формулами рассчитаем надежность основной схемы (рис. 1а), она составит :

, а также резервной схемы (рис. 1б) :

Рассмотрим первый способ подключения (смотри рис. 3.1), когда подключаем по N элементов до тех пор, пока

Рис. 3.1

Тогда формула вероятности для схемы на рис. 2 будет выглядеть так :

, где

,

,

,

,

.

Увеличивая N дополнительных элементов пошагово добиваемся значения :

Шаг первый, при N=1

< 0.95

Шаг второй, при N=2

< 0.95

Шаг третий, при N=3

< 0.95

Шаг четвертый, при N=4

< 0.95

Шаг пятый, при N=5

> 0.95

Из рассмотренных вычислений можно заключить, что для достижения заданной вероятности 0.95 необходимо пяти добавочных элементов.

Рассмотрим второй способ подключения к основной резервной схемы (рис. 3) и найдем число N подключений при котором достигается заданная вероятность .

Рис. 3.2

Формула по которой будет вычисляться вероятность схемы на рис. 3 выглядит так :

, где

, а - смотри выше.

Увеличивая N дополнительных резервных схем пошагово добиваемся значения :

При N=1 : < 0.95

При N=2 : < 0.95

При N=3 : < 0.95

При N=4 : < 0.95

При N=5 : < 0.95

При N=6 : > 0.95

Из рассмотренных вычислений можно заключить, что для достижения заданной вероятности 0.95 необходимо шесть резервных схем.

Этап II

1 Постановка задачи

- найти неизвестную константу функции f(x);

- выписать функцию распределения, построить их графики;

- найти математическое ожидание и дисперсию;

- найти вероятность попадания в интервал (1;4).

2 Теоретическая часть

Под случайной величиной понимается величина, которая в результате измерения (опыта) со случайным исходом принимает то или иное значение.

Функция распределения случайной величины Х называется вероятность того, что она примет значение меньшее, чем заданное х:

.

Основные свойства функции распределения:

1) F(x) - неубывающая функция своего аргумента, при .

2) .

3) .

Плотностью распределения непрерывной случайной величины Х в точке х называется производная ее функции распределения в этой точке. Обозначим ее f(x) :

Выразим функцию распределения F(x) через плотность распределения f(x):

Основные свойства плотности распределения f(x):

1. Плотность распределения - неотрицательная функция .

2. Интеграл в бесконечных пределах от плотности распределения равен единицы:

.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных ее значений на вероятности этих значений.

Перейдем от дискретной случайной величины Х к непрерывной с плотностью f(x).

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной величины:

Для непосредственного вычисления дисперсии непрерывной случайной величины служит формула:

3 Практическая часть

Для нахождения неизвестной константы c применим выше описанное свойство:

, откуда

, или

Найдем функцию распределения основываясь на теоретической части:

- на интервале

- на интервале

- на интервале

Теперь построим график функций f(x)- плотности распределения (рис. 2.1 - кривая распределения) и F(x)- функции распределения (рис. 2.2)

Рис. 2.1

Рис. 2.2

Следуя постановке задачи найдем математическое ожидание и дисперсию для случайной величины X :

Производя еще одну замену приходим к первоначальной формуле из чего можно сделать вывод, что математическое ожидание с.в. Х равно :

Также находим дисперсию :

И последнее, вероятность попадания в интервал (1;4) находим как :

Этап III

1 Постановка задачи

Дана случайная выборка объема n=100 :

104.6

95.2

82.0

107.7

116.8

80.0

100.8

124.6

99.4

101.4

100.6

86.3

88.2

103.8

98.5

111.8

83.4

94.7

113.6

74.7

114.3

86.9

106.6

94.9

105.9

88.6

96.6

93.7

90.8

96.5

110.2

100.0

95.6

102.9

91.1

103.6

94.8

112.8

100.1

95.3

113.9

113.9

86.1

110.3

88.4

97.7

70.1

100.5

90.9

94.5

109.1

82.2

101.9

86.7

97.4

102.1

87.2

94.71

112.4

94.9

111.8

99.0

101.6

97.2

96.5

102.7

98.6

100.0

86.2

89.4

85.0

86.6

122.7

101.8

118.3

106.1

91.3

98.4

90.4

95.1

93.1

110.4

100.4

86.5

105.4

96.9

101.9

83.8

107.3

107.5

113.7

102.8

88.7

112.5

79.4

79.1

98.1

103.8

107.2

102.3

2 Теоретическая часть

Под случайной выборкой объема n понимают совокупность случайных величин , не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях независимых измерений.

Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастания .

Размах выборки есть величина r=Xn-X1, где Xn - max , X1 - min элементы выборки.

Характеристики

Тип файла
Документ
Размер
5,72 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее