31054-1 (675610), страница 3
Текст из файла (страница 3)
Суммой двух событий А и В называется событие С, состоящее в выполнении события А или события В, или обоих событий вместе.
Суммой нескольких событий называется событие, состоящее в выполнении хотя бы одного из этих событий.
Произведением двух событий А и В называется событие D, состоящее в совместном выполнении события А и события В.
Произведением нескольких событий называется событие, состоящее в совместном выполнении всех этих событий.
А к с и о м ы т е о р и и в е р о я т н о с т е й :
1. Вероятность любого события находится в пределах:
.
2. Если А и В несовместные события , то
3. Если имеется счетное множество несовместных событий А1, А2, ... Аn, ... при
, то
Следствие: сумма вероятностей полной группы несовместных событий равна единице, т.е. если
;
при
то
.
Сумма вероятностей противоположных событий ровна единице:
Правило умножения вероятностей: вероятность произведения (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого
.
Для независимых событий правило умножения принимает вид:
, или
Основываясь на теорию выведем некоторые формулы для решения поставленной задачи.
Схема состоит из нескольких n блоков (рис. 2.1), каждый из которых (независимо от других) может выйти из строя. Надежность каждого блока равна p. Безотказная работа всех без исключения блоков необходима для безотказной работы в целом. Найти вероятность безотказной работы всей схемы.
Рис. 2.1
Событие A={безотказная работа прибора} есть произведение n независимых событий А1, А2, ... Аn, где Ai={безотказная работа i -го блока}. По правилу умножения для независимых событий имеем
.
Схема состоит из 2 блоков (рис. 2.2), каждый из которых (независимо от друг от друга) может выйти из строя. Надежность каждого блока равна p. Найти вероятность безотказной работы всей системы.
Рис. 2.2
От события В={система будет работать} перейдем к противоположному: ={система не будет работать}. Для того чтобы система не работала, нужно, чтобы отказали оба блока. Событие
есть произведение двух событий:
={блок 1 отказал}x{блок 2 отказал}.
По правилу умножения для независимых событий:
3 Практическая часть
Воспользовавшись выше изложенными формулами рассчитаем надежность основной схемы (рис. 1а), она составит :
, а также резервной схемы (рис. 1б) :
Рассмотрим первый способ подключения (смотри рис. 3.1), когда подключаем по N элементов до тех пор, пока
Рис. 3.1
Тогда формула вероятности для схемы на рис. 2 будет выглядеть так :
, где
,
,
,
,
.
Увеличивая N дополнительных элементов пошагово добиваемся значения :
Шаг первый, при N=1
< 0.95
Шаг второй, при N=2
< 0.95
Шаг третий, при N=3
< 0.95
Шаг четвертый, при N=4
< 0.95
Шаг пятый, при N=5
> 0.95
Из рассмотренных вычислений можно заключить, что для достижения заданной вероятности 0.95 необходимо пяти добавочных элементов.
Рассмотрим второй способ подключения к основной резервной схемы (рис. 3) и найдем число N подключений при котором достигается заданная вероятность .
Рис. 3.2
Формула по которой будет вычисляться вероятность схемы на рис. 3 выглядит так :
, где
, а - смотри выше.
Увеличивая N дополнительных резервных схем пошагово добиваемся значения :
При N=1 : < 0.95
При N=2 : < 0.95
При N=3 : < 0.95
При N=4 : < 0.95
При N=5 : < 0.95
При N=6 : > 0.95
Из рассмотренных вычислений можно заключить, что для достижения заданной вероятности 0.95 необходимо шесть резервных схем.
Этап II
1 Постановка задачи
- найти неизвестную константу функции f(x);
- выписать функцию распределения, построить их графики;
- найти математическое ожидание и дисперсию;
- найти вероятность попадания в интервал (1;4).
2 Теоретическая часть
Под случайной величиной понимается величина, которая в результате измерения (опыта) со случайным исходом принимает то или иное значение.
Функция распределения случайной величины Х называется вероятность того, что она примет значение меньшее, чем заданное х:
.
Основные свойства функции распределения:
1) F(x) - неубывающая функция своего аргумента, при
.
2) .
3) .
Плотностью распределения непрерывной случайной величины Х в точке х называется производная ее функции распределения в этой точке. Обозначим ее f(x) :
Выразим функцию распределения F(x) через плотность распределения f(x):
Основные свойства плотности распределения f(x):
1. Плотность распределения - неотрицательная функция .
2. Интеграл в бесконечных пределах от плотности распределения равен единицы:
.
Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных ее значений на вероятности этих значений.
Перейдем от дискретной случайной величины Х к непрерывной с плотностью f(x).
Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной величины:
Для непосредственного вычисления дисперсии непрерывной случайной величины служит формула:
3 Практическая часть
Для нахождения неизвестной константы c применим выше описанное свойство:
, откуда
, или
Найдем функцию распределения основываясь на теоретической части:
- на интервале
- на интервале
- на интервале
Теперь построим график функций f(x)- плотности распределения (рис. 2.1 - кривая распределения) и F(x)- функции распределения (рис. 2.2)
Рис. 2.1
Рис. 2.2
Следуя постановке задачи найдем математическое ожидание и дисперсию
для случайной величины X :
Производя еще одну замену приходим к первоначальной формуле из чего можно сделать вывод, что математическое ожидание с.в. Х равно :
Также находим дисперсию :
И последнее, вероятность попадания в интервал (1;4) находим как :
Этап III
1 Постановка задачи
Дана случайная выборка объема n=100 :
104.6 | 95.2 | 82.0 | 107.7 | 116.8 | 80.0 | 100.8 | 124.6 | 99.4 | 101.4 |
100.6 | 86.3 | 88.2 | 103.8 | 98.5 | 111.8 | 83.4 | 94.7 | 113.6 | 74.7 |
114.3 | 86.9 | 106.6 | 94.9 | 105.9 | 88.6 | 96.6 | 93.7 | 90.8 | 96.5 |
110.2 | 100.0 | 95.6 | 102.9 | 91.1 | 103.6 | 94.8 | 112.8 | 100.1 | 95.3 |
113.9 | 113.9 | 86.1 | 110.3 | 88.4 | 97.7 | 70.1 | 100.5 | 90.9 | 94.5 |
109.1 | 82.2 | 101.9 | 86.7 | 97.4 | 102.1 | 87.2 | 94.71 | 112.4 | 94.9 |
111.8 | 99.0 | 101.6 | 97.2 | 96.5 | 102.7 | 98.6 | 100.0 | 86.2 | 89.4 |
85.0 | 86.6 | 122.7 | 101.8 | 118.3 | 106.1 | 91.3 | 98.4 | 90.4 | 95.1 |
93.1 | 110.4 | 100.4 | 86.5 | 105.4 | 96.9 | 101.9 | 83.8 | 107.3 | 107.5 |
113.7 | 102.8 | 88.7 | 112.5 | 79.4 | 79.1 | 98.1 | 103.8 | 107.2 | 102.3 |
2 Теоретическая часть
Под случайной выборкой объема n понимают совокупность случайных величин , не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях независимых измерений.
Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастания .
Размах выборки есть величина r=Xn-X1, где Xn - max , X1 - min элементы выборки.