31054-1 (675610), страница 2
Текст из файла (страница 2)
Формулы дискретного преобразования Фурье
Обратное преобразование Фурье.
где n=1,2,... , k=1,2,...
Дискретным преобразованием Фурье - называется N-мерный вектор
при этом, .
Разложение четной функции в ряд
Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до смотри рис.2
Рис.2
поэтому разложение по косинусу имеет вид:
Из разложения видим что при n=2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:
На основе данного разложения запишем функцию в виде ряда:
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
2-ая гармоника
3-я гармоника
4-ая гармоника
5-ая гармоника
А теперь рассмотрим сумму этих гармоник F(x):
Комплексная форма ряда по косинусам
Для рассматриваемого ряда получаем коэффициенты (см. гл.1)
,
но при не существует, поэтому рассмотрим случай когда n=+2 :
(т.к.
см. разложение выше)
и случай когда n=-2:
( т.к.
)
И вообще комплексная форма:
или
или
Разложение нечетной функции в ряд
Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3
Рис.3
поэтому разложение по синусам имеет вид:
Из данного разложения видно, что при n=2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.
При n=1:
,
и при n=2:
Учитывая данные коэффициенты имеем разложения в виде
и вообще
Найдем первые пять гармоник для данного разложения:
1-ая гармоника
2-ая гармоника
3-ая гармоника
4-ая гармоника
5-ая гармоника
И просуммировав выше перечисленные гармоники получим график функции F(x)
Вывод:
На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.
Комплексная форма ряда по синусам
Основываясь на теорию (см. гл.1) для ряда получаем:
,
(т.к.
)
тогда комплексный ряд имеет вид:
ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ
Проверка условий представимости
Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до
как равную нулю(рис.4).
Рис.4
а) f(x)-определенна на R;
б) f(x) возрастает на , f(x) убывает на
- кусочнo-монотонна.
f(x) = const на и
.
<
.
Интеграл Фурье
В соответствии с теорией (см. гл. 1) найдем a(u) и b(u):
;
.
И в конечном варианте интеграл Фурье будет выглядеть так:
Интеграл Фурье в комплексной форме
Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:
,
,
а теперь получим интеграл в комплексной форме:
.
ГЛАВА 4 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ПОЛИНОМОМ ЛЕЖАНДРА
Основные сведения
Функцию можно разложить в ортонормированной системе пространства X=[-1,1] , причем полиномы получим, если проинтегрируем выражение:
Соответственно получим для n=0,1,2,3,4,5, ... :
. . . . . . . . . .
Для представления функции полиномом Лежандра необходимо разложить ее в ряд:
,
где и разлагаемая функция должна быть представлена на отрезке от -1 до 1.
Преобразование функции
Наша первоначальная функция имеет вид (см. рис. 1):
т. к. она расположена на промежутке от 0 до необходимо произвести замену, которая поместит функцию на промежуток от -1 до 1.
Замена:
и тогда F(t) примет вид
или
Вычисление коэффициентов ряда
Исходя из выше изложенной формулы для коэффициентов находим:
Далее вычисление коэффициентов осложнено, поэтому произведем вычисление на компьютере в системе MathCad и за одно проверим уже найденные:
Рассмотрим процесс стремления суммы полинома прибавляя поочередно - слагаемое:
А теперь рассмотрим график суммы пяти полиномов F(t) на промежутки от -1 до 0 (рис.5):
Рис. 5
т.к. очевидно, что на промежутке от 0 до 1 будет нуль.
Вывод:
На основе расчетов гл.2 и гл.4 можно заключить, что наиболее быстрое стремление из данных разложений к заданной функции достигается при разложении функции в ряд.
ГЛАВА 5 ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ
Прямое преобразование
Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до на N=8 частей, так чтобы приращение:
В нашем случае , и значения функции в k-ых точках будет:
для нашего случая (т.к. a=0).
Составим табличную функцию:
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 0 | 0.785 | 1.571 | 2.356 | 3.142 | 3.927 | 4.712 | 5.498 |
| 0 | 0.707 | 1 | 0.707 | 0 | 0 | 0 | 0 |
Табл. 1
Прямым дискретным преобразованием Фурье вектора называется
. Поэтому найдем :
, n=0,1,...,N-1
Сумму находим только до 3 слагаемого, т.к. очевидно, что от 4 до 7 к сумме суммируется 0 (т.к. значения функции из таблицы равны нулю).
Составим таблицу по прямому дискретному преобразованию:
зная, , где
, где
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2,4 | 2 | 1 | 0 | 0.4 | 0 | 1 | 2 |
| 0.318 | 0.25 | 0.106 | 0 | 0.021 | 0 | 0.009 | 0 |
Табл. 2
Амплитудный спектр
Обратное преобразование
Обратимся к теории гл.1. Обратное преобразование- есть функция :
В нашем случаи это:
А теперь найдем модули и составим таблицу по обратным дискретным преобразованиям:
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 0 | 0.785 | 1.571 | 2.356 | 3.142 | 3.927 | 4.712 | 5.498 |
| 0 | 0.707 | 1 | 0.707 | 0 | 0 | 0 | 0 |
| 0 | 0.708 | 1 | 0.707 | 8e-4 | 5e-5 | 5e-4 | 3e-4 |
Табл. 3
Из приведенной таблицы видно, что приближенно равно
.
Построим графики используя табл.3, где - это F(k), а
- это f(k) рис. 6 :
Рис. 6
Вывод:
На основе проделанных расчетов можно заключить, что заданная функция представима в виде тригонометрического ряда Фурье, а также интеграла Фурье, полинома Лежандра и дискретных преобразований Фурье. О последнем можно сказать, что спектр (рис. 6) прямого и обратного преобразований совпадают с рассматриваемой функцией и расчеты проведены правильно.
Этап I
1 Постановка задачи
Дана основная (рис. 1.1а) и резервная (рис. 1.1б) схемы. Рассмотреть два способа повышение надежности основной схемы до уровня 0.95
а) б)
Рис. 1.1
Первый способ
- каждому элементу основной схемы подключаются параллельно по N резервных элементов имеющих надежность в два раза меньше, чем надежность элемента к которому подключают.
Второй способ
- подключить к основной схеме параллельно по N резервной схеме.
№ элемента | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Надежность | 0.6 | 0.6 | 0.6 | 0.3 | 0.7 | 0.4 | 0.3 | 0.5 | 0.1 |
Надеж.(резер.) | 0.3 | 0.3 | 0.3 | 0.15 | 0.35 |
2 Теоретическая часть
Ввиду важности операций сложения и умножения над событиями дадим их определение: