KEPLER (668629), страница 2

Файл №668629 KEPLER (Иоганн Кеплер) 2 страницаKEPLER (668629) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рис. 2 Правильные многогранники (из книги Кеплера «Космографическая тайна»)



Математический аппарат, применяемый в этом случае, достаточно элементарен, дело сводится к вы­числениям зависимостей между радиусами сфер, описан­ных вокруг соответственных правильных многогран­ников и вписанных в них. Пусть, например, радиус орбиты Земли, а значит и соответст­вующей сферы, равен 1. Эта сфера опи­сана вокруг икосаэдра, в который вписана сфера Венеры. Решая геометрическую задачу на опреде­ление радиуса сферы, вписанной в икосаэдр, и сравнивая полученную величину с радиусом описанной вокруг ико­саэдра сферы Кеплер получил соотношение 0,762 : 1. Относительные расстояния до Солнца для шести пла­нет Солнечной системы, полученные Коперником и Кепле­ром, и современные усредненные значения приводятся в таблице:

Меркурий

Венера

Земля

Марс

Юпитер

Сатурн

По Копернику

0,379

0,719

1,000

1,520

5,219

9,174

По Кеплеру

0,419

0,762

1,000

1,440

5,261

9,163

Современные усред­ненные значения

0,387

0,723

1,000

1,524

5,203

9,539

Видим, что данные Кеплера весьма значительно отличаются от вычисленных еще Коперником, и притом во всех случаях — в сторону ухудшения. Объясняя эти расхождения, Кеплер предположил, что каждая из планетных сфер, не будучи материальной, тем не менее имеет некоторую толщину.

Закончив рукопись, Кеплер озаглавил ее так: «Prodromos dissertationem cosmographicum continens Mysterium cosmographicum» — «Предвестник космографических исследований, содержащий космографическую тайну».

Главный поиск. «Новая астрономия»

Над «Новой астрономией» Кеплер работал с небольши­ми перерывами с 1600 по 1606 г. Значение этой книги состоит прежде всего в том, что в ней дан вывод двух из трех знаменитых законов движения планет, названных его именем. В современной формулировке эти законы обыч­но звучат так:

I. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находит­ся Солнце.

II. Площади, описываемые радиусами-векторами пла­нет, пропорциональны времени.

Третий закон был опубликован Кеплером позже, в 1619 г., в книге «Harmonices Mundi» («Гармония мира»). Кеплерово сочинение и по форме и по содержанию зна­чительно отличается от многих научных трактатов того времени. Если Коперник, Галилей и Ньютон знакомят нас только с конечными результатами своих научных дости­жений, то Кеплер совершенно сознательно описывает ход своей работы во всех деталях, включая все неудачи и успехи, ошибки и гениальные догадки, ловушки и их об­ходы. Почему он так поступает, он объясняет в преди­словии: «Для меня важно не просто сообщить читателю, что я должен сказать, но прежде всего ознакомить его с дово­дами, оговорками, счастливо преодоленными опасностями, которые привели меня к моим открытиям. Когда Христо­фор Колумб, Магеллан и португальцы, из которых первый открыл Америку, второй Китайский океан, а последние — морской путь вокруг Америки, повествуют, как они сби­вались с пути и блуждали в своих путешествиях, мы не только прощаем им это, но, более того, мы не желаем пропуска этих рассказов, так как тогда при чтении было бы потеряно впечатление о всем значительном в их пред­приятиях. Пусть же поэтому и мне не поставят в вину, когда я, вызывая у читателя интерес, пойду подобным путем в своем изложении. Конечно, при чтении, например похождений аргонавтов, мы сами не принимаем участия в их злоключениях, а трудности и тернии на моем мыслен­ном пути могут задеть и самого читателя, но таков уж жребий всех математических сочинений».

Кеплер начал свое исследование составлением на ос­новании наблюдений Тихо Браге полного списка момен­тов, долгот и широт для всех противостояний планеты Марс с 1580 г. (Браге наблюдал противостояния Марса десять раз с 1580 по 1600 г., два раза — в 1602 и 1604 гг. их наблюдал Кеплер). Еще Коперник, следуя Птолемею, считал центр земной орбиты истинным центром орбит всех планет. Браге так­же определял противостояние планеты как положение, противоположное этой точке, т. е. так называемому «сред­нему Солнцу». Кеплер уже в «Космографической тайне» указывал, что Солнце само является естественным цент­ром планетной системы, и считал, что противостояние сле­дует брать по отношению к реальному, а не к среднему Солнцу. Это было первым существенным нововведением в методы исследования.

Кеплер впервые предпо­ложил, что движение планет происходит вследствие воз­действия на них некоей силы, исходящей от Солнца. Таким образом, у Кеплера Солнце становится не толь­ко источником света и тепла для всей планетной системы, но также и источником движущей планеты силы.

Второе нововведение Кеплера заключалось в следую­щем. Орбиты всех планет лежат не совсем в одной плос­кости — их плоскости образуют одна с другой небольшие углы (например, плоскости орбит Земли и Юпитера со­ставляют угол в 1°18,5'). Если не учесть этот факт, приходится встречаться с большими затруднениями при объяснении некоторых особенностей в наблюдаемых с Земли положе­ниях Марса. Коперник, например, считал, что плоскость орбиты Марса колеблется в пространстве, не интересуясь физической причиной такого странного явления. Предпо­ложив, что дело здесь в наличии некоторого постоянного угла между плоскостями планетных орбит, Кеплер без осо­бого труда, по данным наблюдений Браге, убеждается в правильности своей гипотезы и находит угол между пло­скостями орбит Земли и Марса равным 1°50'.

Третье нововведение Кеплера более радикально. От Платона и Птолемея до Коперника и Браге астрономы были уверены в том, что планеты совершают свои круго­вые движения с равномерной скоростью. Кеплер, сохра­няя на первых порах движение круговым, отбрасывает аксиому равномерного движения. И при этом он руковод­ствуется прежде всего физическими соображениями: если Солнце управляет движением, является его источником, то его сила должна действовать на планету более интен­сивно, когда она находится ближе к источнику, и менее интенсивно, когда планета от него удалится, следователь­но, планета будет двигаться с большей или меньшей ско­ростью в зависимости от ее расстояния до Солнца. Эта идея была не только отрицанием античной тра­диции, она отвергала и предположение Коперника, по которому не могло быть, « ... чтобы простое небесное тело неравномерно двигалось одной сферой ... ». Коперник был в свою очередь решительно не согла­сен с учением Птолемея о том, что планеты движутся равномерно не вокруг центров своих орбит, а вокруг во­ображаемой точки на некотором расстоянии от центра. Эта точка называлась punctum aequans или aequant (уравнивающей точкой, или эквантом). Коперник, отказав­шись от птолемеевых эквантов, ввел вместо них добавоч­ные эпициклы. Кеплер, отбрасывая догму равномерного движения, воз­вратился к понятию экванта, рассматривая его как важное вычислительное средство.

Этими нововведениями Кеплер несколько облегчил предстоящее решение своей задачи. Кеплер писал: «Ох, сколько я должен был пролить слез над трогательным старанием Апиана, кото­рый, следуя Птолемею, зря тратил свое драгоценное время и изобретательность на построение спиралей, петель, вин­товых линий, завитков и целого лабиринта инволюций, чтобы изобразить то, что существует только в воображе­нии и которое природа отказывается принять как свое подобие».

Рис. 3

Первая попытка решить задачу описывается Кеплером в XVI главе «Новой астрономии». Его задача состояла прежде всего в определении некоторых параметров ор­биты Марса, которую, напомним, Кеплер пока еще полагал круговой. Нужно было определить радиус орбиты (см. Рис. 3), направление по отношению к неподвижным звездам линии аспид, т.е. оси, соединяющей точку, в которой планета бывает ближе всего к Солнцу (перигелий), и противоположную ей точку (афелий), а также положение Солнца (S), центра орбиты (C) и экванта (Е), которые лежат на этой оси. Из журналов наблюдений Тихо Браге, которы­ми он теперь располагал, он выбрал запись о четырех наблюдавшихся противостояниях Марса — в 1587, 1591, 1593 и 1595 гг. В самом начале своих вычисле­ний Кеплер по рассеянности допускает несколько ошибок, которые должны были бы существенно повлиять на пра­вильность вычислений. Кеплер так и не заметил их до конца своей работы, но их обнаружил французский исто­рик астрономии Деламбр. Тем не менее исправленные Деламбром вычисления в результате дали почти те же значения — оказалось, что в самом конце вычислений Кеплер при делении снова допустил ошибки, перекрывшие первые! В результате вычислений Кеплер по­лучил полный эксцентриситет, равный 0,18564 долям ра­диуса, причем Солнце отстоит от центра на 0,11332, а эквант — на 0,07232 доли радиуса (современная теория показывает, что оба расстояния должны быть приблизи­тельно равны 0,5625 и 0,4375 полного эксцентриситета; значения, полученные Кеплером — 0,6104 и 0,3896 соответственно). Дол­гота афелия для 1587 г. составляла 148°48’55’’. Полу­ченные им значения при подстановке в данные десяти наблюдений Браге расходились менее чем на 2’, что было вполне допустимым.

Однако уже следующая глава начинается удивленным возгласом: «Как же это могло быть? Гипотеза, которая хорошо согласуется с наблюдениями противостояний, все же ошибочна». И в двух последующих главах Кеплер обстоятельно объясняет, как он установил, что гипотеза ложна и почему ее нужно отвергнуть. Пытаясь применить свою модель к вычислению про­межуточных положений Марса по данным наблюдений Браге, Кеплер обнаруживает расхождение теории с прак­тикой, достигающей в численном выражении 8’.

Следующий этап исследований Кеплер описывает в книге третьей. Многократные вычисления говорят Кеплеру о том, что невозможно построить круговую орбиту планеты, полно­стью соответствующую данным наблюдений. Окружность полностью определяется заданием трех точек на ней, любая другая кривая линия требует знания положения большего количества точек на ней. Для опре­деления формы орбиты Марса, копь скоро она не была окружностью, требовалось прежде всего уточнить орбиту небесного тела, на котором размещен наблюдатель, т. е. самой Земли. Ведь из неправильного представления о дви­жении наблюдателя выводы о движении наблюдаемых объ­ектов будут тоже неверны. Если бы было возможно в каждый момент времени находить непо­средственно величину отрезка Земля — Солнце. Но такой возможности у Кеплера не было. Другой принципиально возможный слу­чай заключается в выборе в пространстве некоторого непод­вижного ориентира о котором известно, что он в течение длительного времени сохраняет свое положение неизменным. Тогда земные наблюдатели могли бы при необходимости визи­ровать направление на него.

Рис. 4

Допустим, что в определенный момент времени Зем­ля (З) находится на прямой, соединяющей Солнце (С) с нашим ориентиром М (см. Рис. 4). Если в это время визировать с Земли направление на ориентир М, то по­лучим направление СМ (Солнце—ориентир). Пусть это направление зафиксировано на небесном своде. Рассмотрим положение Земли в другой момент (З1). Если и Солнце (С) и ориентир М видны с Земли (З1) то в треугольнике СЗ1М известен угол  = СЗ1М. Направление прямой СМ относительно неподвижных звезд определено раз и навсегда. Но теперь, установив направление на Солнце З1С прямым наблюдением, можно определить и угол  = З1СМ. Следовательно, треугольник СЗ1М может быть теперь построен по стороне СМ и двум углам  и  для каждого положения З1 и при этом определится это самое положение З1 относительно задан­ного базиса СМ. Таким образом можно получить необхо­димое число точек, принадлежащих орбите Земли.

Характеристики

Тип файла
Документ
Размер
701 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6521
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее